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General	Background	

Essen?ally	All	Large-Scale	Sta?s?cal	Programs	Require	a	
Complex	Balance	of	Mul?ple	Dimensions	of:	
	
-  Quality		

-  Risk	(Including	Disclosure	Risk)	

-  Cost		
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•  The	Disclosure	Avoidance	System	(DAS)	assures	that	the	2020	Census	data	products	meet	the	legal	
requirements	of	Title	13,	Sec:on	9	of	the	U.S.	Code.	

•  The	DAS	is	designed	to	prevent	improper	disclosures	of	data	about	individuals	and	establishments	in	the	
2020	census	data	products.		

•  Stakeholders:	All	users	of	data	from	the	2020	Census.	

Disclosure	Avoidance	System	
	Purpose	
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•  Project	purpose	—	Why	do	we	need	a	new	DAS?	

•  Noise	injec:on	and	differen:al	privacy	—	A	brief	tutorial	

•  State	of	the	project	

•  Looking	forward	and	conclusion	

CONTROLLED		
NOISE	

Disclosure	Avoidance	System	
	Agenda	
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Project purpose:  
Why we need a new disclosure avoidance system
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We	create	sta:s:cs	by	collec:ng	data,	processing	and	publishing	

PUBLISHED	
SUMMARY	

DATA	

RESPONDENT	
DATA	 PROCESSING	
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Database	reconstruc:on	is	a	mathema:cal	process	that	reverses	this	process.	

PUBLISHED	
SUMMARY	

DATA	

RESPONDENT	
DATA	 PROCESSING	
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Database	reconstruc:on	is	a	mathema:cal	process	that	reverses	this	process.	

PUBLISHED	
SUMMARY	

DATA	

RESPONDENT	
DATA	 PROCESSING	
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Consider a census block:

Counts	

Age	<	18	 4	

Age	>=	18	 6	

Race	1	 4	

Race	2	 4	

Race	3	 2	

PUBLISHED	DATA	
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Counts	

Age	<	18	 4	

Age	>=	18	 6	

Race	1	 4	

Race	2	 4	

Race	3	 2	

Race	1	 Race	2	 Race	3	

R1	

PUBLISHED	DATA	RECONSTRUCTED	DATA	
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Counts	

Age	<	18	 4	

Age	>=	18	 6	

Race	1	 4	

Race	2	 4	

Race	3	 2	

Race	1	 Race	2	 Race	3	

R1	

R2	

PUBLISHED	DATA	RECONSTRUCTED	DATA	
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Race	1	 Race	2	 Race	3	
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AGE	>=18	

AGE	+	
RACE	
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RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	
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RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

RACE		
+	AGE	

TWENTY	CONFIDENTIAL	
VALUES	
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Counts	

Age	<	18	 4	

Age	>=	18	 6	

Race	1	 4	

Race	2	 4	

Race	3	 2	

PUBLISHED	DATA	

FIVE	PUBLISHED	STATISTICS	

TWENTY	CONFIDENTIAL	
VALUES	
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“This	is	the	
official	form	
for	all	the	
people	at	this	
address.”	

“It	is	quick	
and	easy,	and	
your	answers	
are	protected	
by	law.”	
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2010	Census	of	Popula:on	and	Housing	

Total	popula?on	 308,745,538	
Pieces	of	informa:on	per	person:	 6	
Total	pieces	of	informa:on:	 1,852,473,228	
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PL94-171	Redistric?ng	
2,771,998,263	

Balance	of	Summary	File	1	
2,806,899,669	

Summary	File	2	
2,093,683,376	

2010	Census	Publica:on	Schedule	
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Publica?on	 Released	counts	
(including	zeros)	

PL94-171	Redistric:ng	 2,771,998,263	

Balance	of	Summary	File	1	 2,806,899,669	

Summary	File	2	 2,093,683,376	

Public-use	micro	data	sample	 30,874,554	

Lower	bound	on	published	sta:s:cs	 7,703,455,862	

Sta:s:cs/person	 25	

2010	Census:	Summary	of	Publica:ons	
(approximate	counts)	
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2010	Census	Sta?s?cs/person	collected:	 6	

2010	Census	Sta:s:cs/person	published:	 25	

Lower	bound	on	collected	sta:s:cs:	
(308,745,538	x	6)	

1,852,473,228	

Lower	bound	on	published	sta:s:cs	
(25	sta:s:cs	per	person)	

7,703,455,862	

The	threat	of	database	reconstruc:on	
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Aggrega?on	

Two	privacy	mechanisms	for	the	2010	Census	
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Aggrega?on	 Swapping	

Two	privacy	mechanisms	for	the	2010	Census	
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Noise injec=on and  
differen=al privacy


CONTROLLED	
NOISE	
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Counts	
Age	<	18	 4	
Age	>=	18	 6	

Race	1	 4	
Race	2	 4	
Race	3	 2	

NOISE	

Counts	
5	
5	

3	
5	
2	

Database	reconstruc:on	and	noise	injec:on	
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The more noise, the more privacy  
— and the less accuracy


Counts	
Age	<	18	 4	
Age	>=	18	 6	

Race	1	 4	
Race	2	 4	
Race	3	 2	

Lille	Noise	

Counts	
5	
5	

3	
5	
2	
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The more noise, the more privacy  
— and the less accuracy


Counts	
Age	<	18	 4	
Age	>=	18	 6	

Race	1	 4	
Race	2	 4	
Race	3	 2	

Lille	Noise	

Counts	
5	
5	

3	
5	
2	

BIG	
NOISE	

Counts	
2	
8	

8	
1	
1	
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The more noise, the more privacy  
— and the less accuracy


Counts	
Age	<	18	 8	
Age	>=	
18	 2	

Race	1	 3	
Race	2	 2	
Race	3	 5	

BIG	
NOISE	

Counts	
2	
8	

8	
1	
1	

Counts	
Age	<	18	 4	
Age	>=	18	 6	

Race	1	 4	
Race	2	 4	
Race	3	 2	

Counts	
Age	<	18	 3	
Age	>=	18	 7	

Race	1	 5	
Race	2	 2	
Race	3	 3	

POSSIBILITY	1	

POSSIBILITY	2	

POSSIBILITY	3	 30	



Differen:al	privacy	is	a	tool	for	controlling	the	noise/accuracy	trade-off	
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•  Differen:al	privacy	provides:	
•  Provable	bounds	on	the	maximum	privacy	
loss	

•  Algorithms	that	allow	policy	makers	to	
manage	the	trade-off	between	accuracy	and	
privacy	loss.	

Final	privacy-loss	budget	determined	by	the	
Data	Stewardship	Execu:ve	Policy	Commilee	(DSEP)		

with	recommenda:ons	from	the	Disclosure	Review	Board	(DRB)	

Less	Noise	

MORE	
NOISE	

In	2017,	the	Census	Bureau	announced	that	it	would	use	differen:al	privacy	for	the	2020	
Census.	
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State of the project
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Census	
Unedited	

File		

Census	
Edited	
File	

Microdata	
Detail	File	

Pre-specified	
tabular	summaries:		
PL94-171,	SF1,	SF2	

Special	tabula?ons	
and	post-census	

research	

Decennial	
Response	

File	

Disclosure	
Avoidance	
System	

Privacy-loss	Budget,	
Accuracy	Decisions	

	ε	

Global	
Confiden,ality	
Protec,on	
Process	

accuracy	
trade-offs	

Red	=	Confiden:al	Data	 Blue	=	Priva:zed	Data	

The	“Disclosure	Avoidance	System”	is	part	of	the	Census	data	processing	pipeline	
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•  Advantages:	
•  Privacy	guarantees	are	tunable	and	provable	
•  Privacy	guarantees	are	future-proof	
•  Privacy	guarantees	are	public	and	explainable	
•  Protects	against	database	reconstruc,on	

•  Disadvantages:	
•  En:re	country	must	be	processed	at	once	for	best	
accuracy	

•  Every	use	of	private	data	must	be	tallied	in	the	
privacy-loss	budget	

Global	Confiden:ality	
Protec:on	Process	

	
Disclosure	Avoidance	

System	

Differen:al	privacy	has	many	advantages	to	swapping	
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•  Open	source	system	
•  Source	code	published	on	the	Internet	
•  Testable	with	data	from	1940	Census	

36	

We	will	make	the	DAS	public!	



•  Differen:al	privacy	is	not	widely	known	or	
understood	outside	academia	

•  Most	data	users	expect	the	same	accuracy	
regardless	of	the	level	of	detail	

•  In	2000	and	2010	we	used	swapping	with	an	
undisclosed	swap	rate	
–  The	Census	Bureau	did	not	quan:fy	the	error	
rate	

Communica:ons	Strategy	
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•  ENGINEERING	PROJECT	–	Building	a	Turnkey	Batch-Oriented	System	
•  Crea:ng	a	produc:on	system	that	runs	within	the	2018	End-to-End	Census	Test	and	2020	Census	

produc:on	environments	
–  Resource	intensive,	but	only	when	ac:vely	in	use	
–  Based	on	Amazon	Elas:c	Map	Reduce	technology	
–  Reads	CEF	from	the	Census	Data	Lake	
–  Processes	using	DAS	algorithms	and	a	commercial	op:mizer	
–  Creates	the	Microdata	Detail	File	
–  Saves	results	in	the	Census	Data	Lake	

State	of	the	DAS	Project(s):	Engineering	&	Science	
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•  SCIENCE	PROJECT	—	Improving	the	
differen?al	privacy	algorithms	

•  We	are	steadily	improving	the	accuracy/
privacy	trade-off		

•  Progress	requires	interac:ve	access	to	
microdata	from	the	2010	Census,	and	
con:nued	access	to	high-performance	
compu:ng	on	demand.	

By	block	

By	block	

State	of	the	DAS	Project(s):	Engineering	&	Science	
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Looking forward
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•  The	current	“top-down”	algorithm	handles	the	PL94-171	queries	and	generates	micro-data	that	meet	the	
requirements	to	publish	test	files.	

•  We’re	sharing	tables	with	Subject	Maker	Experts	(SMEs)	and	discussing	possible	improvements	

•  We	will	soon	integrate	the	High-Dimensional	Matrix	Mechanism	(HDMM),	into	our	top-down	algorithm,	
which	will	improve	accuracy	on	requested	tabula:ons	

•  The	Census	Bureau	is	collec:ng	“use	cases”	from	our	data	users		

DAS	Highlights	---	Good	news!	
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FRN No=ce

We	want	users	of	2020	Census	Data	
Products	to	tell	us	how	they	use	our	
data!	
	
First	FRN:	
83	FR	84111	
7/19/2018	->	9/17/2018	
	
Second	FRN:	
83	FR	50636	
10/09/2018	->	11/08/2018	
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•  We	have	not	yet	addressed	household	queries	or	person-household	joins,	although	we	have	in-progress	
research	for	both	
–  Householder	queries,	e.g.	“how	many	households	are	headed	by	someone	aged	20-30?”	

–  Person-household	join,	e.g.	“how	many	children	are	in	households	headed	by	someone	aged	20-30?”	

•  Lack	of	scien:sts	and	engineers	trained	in	differen:al	privacy	

•  Many	open	ques:ons	in	mathema:cal	sta:s:cs	and	methodology	

DAS	Science	Highlights	---	Challenges!	
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•  We	are	using	differen?al	privacy	to	assure	that	published	sta:s:cs	do	not	violate	the	Census	Bureau’s	
Title	13	obliga:ons	

•  This	is	a	huge	step	forward	for	the	Census	Bureau	

•  We	have	a	working	system	and	will	use	it	for	the	2018	End-to-End	Census	Test	
–  For	2018	we	are	only	producing	the	PL94-171	redistric:ng	tabula:ons	

•  There	is	a	lot	of	scien:fic	work	that	remains	to	be	done	

• Contact:	Simson.L.Garfinkel@census.gov		John.M.Abowd@census.gov		

2020	Disclosure	Avoidance	System:	Conclusions	
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QUESTIONS?	
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