A Guide for Selecting Statistical Techniques for Analyzing Social Science Data

Second Edition

Survey Research Center Institute for Social Research
The University of Michigan
Frank M. Andrews
Laura Klem
Terrence N. Davidson Patrick M. O'Malley Willard L. Rodgers

Library of Congreas Cataloging in Publication Data

 Main entry under titie:A Guide for selecting statistical techniques for analyzing social science data.
"L-Hel. D-58 "1058, ISR code no. 3597" - T.p. verso Blbliography: p.

1. Social sciences-Statistical methods. I. Andrews, Frank. M. II. University of Michigan. Survey Research Center.
HA29.G897 1981
$300^{\prime} .28$
$81-7082$

ISBN 0-87944-274-3 (pbk.) AACR2

Published by the Institute for Social Research, The University of Michigan, Ann Arbor, Michigan 48106

Second Edition 1881
576
Copyright 1981 by The University of Michigan, All Rights Reserved
Manufactured in the United States of America

Cover Design by Carol Lawrence

CONTENTS

Preface to the Second Edition vi
Instructions and Comments on the Use 1of this GuideThe Decision Tree: Questions and Answers3Leading to Appropriate Statistics orStatistical Techniques
Appendix A: Sources of Further Information 31
about Statistics Appearing in this Guide
Appendix B: Programs that Compute Statistics 43
Listed in the Guide
Appendix C: Some New or Rarely Used 59
Statistical Techniques
Glossary 63
References 67

PREFACE TO THE SECOND EDITION

This Guide is intended to help social scientists select from the vast array of statistical techniques a particular statistic or technique that can be appropriately applied in a given analysis. The Guide is addressed to practicing social scientists, data analysts, and graduate students who already have some knowledge of social science statistics and who want a systematic but highly condensed overview of many of the statistical techniques in current use and of the purposes for which each is intended.

The popularity of the first edition of the Guide leads us to hope that this substantially expanded and updated second edition will also prove useful. The original version of this Guide became available in 1971, was revised and formally published by the Institute for Social Research in 1974, and has subsequently been through four English-language printings. In addition, ISR has granted permission for editions in French (Laval University, Quebec) and Hebrew (University of Haifa). This second edition contains nearly all of the material that appeared in the first edition plus significant expansions: the number of statistical techniques included in the decision tree has been increased by almost 50 percent, with major additions being made to the coverage of multivariate analysis; a glossary that defines technical terms has been added; and Appendix B, which indicates where each statistic can be found in the output from computer software, now includes detailed information on sources in the OSIRIS, MIDAS, SPSS, SAS, and BMDP soft ware systems. There has been a general updating throughout the Guide to incorporate many of the statistical and analytical developments of the past decade.

No guide could include all the statistics ever proposed as useful for social science data analysis and this Guide makes no claim to do so. Rather, it attempts to include -
and functionally distinguish-those statistics and statistical techniques that are in common use in the social sciences, that receive significant attention in social science statistics texts, or that seem to have high potential usefulness. About 150 statistics or statistical techniques are included in this Guide.
The core of the Guide is the 28 pages of sequential questions-and-answers that lead the user to an appropriate technique. This is the "decision tree." Preceding the "tree" section is a short set of instructions about how to use the tree and some comments suggesting alternative strategies and certain cautions that should be kept in mind. Three appendices and a glossary follow the tree. Appendix A cites specific pages in a major reference where each statistic presented in the Guide is discussed and its means of computation is given. Appendix B identifies the programs in five major software systems and several special-purpose programs that compute given statistics. Appendix C covers some additional statistical techniques that were judged to be too new or too rarely used to merit inclusion in the decision-tree portion of the Guide but that seemed potentially useful for social science data analysis. The Guide concludes with a bibliography presenting the full reference for each cited book and article.

For assistance in the preparation of this Guide we are grateful to Christine Zupanovich and her colleagues in the ISR Word Processing Group, to Linda Stafford and her colleagues in the ISR Publishing Division, and to Eugene Leppanen and his colleagues in the University of Michigan Technical Illustration Unit. Preparation of the Guide has been partially supported by the Computer Support Group of ISR's Survey Research Center.

INSTRUCTIONS AND COMMENTS ON THE USE OF THIS GUIDE

This Guide is intended to help a data analyst select statistics or statistical techniques appropriate for the purposes and conditions of a particular analysis.

To use this Guide, start with the question on page 3, choose one of the answers presented there, and then continue along the "branches" of the decision tree as instructed. Eventually you will arrive at a box that names a statistical technique and/or a statistical measure and/or a statistical test appropriate to your situation-if one was known to the authors. Many of the technical terms used in the Guide are defined in the Glossary that begins on page 63.

The typical box contains one statistical measure (in the portion outlined by solid Iines) and one statistical test (in the dotted portion). In a few cases, several different measures, or several different tests, are presented in the same box. These are essentially equivalent from a functional point of view, and comments to help you choose among them may appear in an accompanying footnote. Sometimes a measure appears without an accompanying test if none seemed particularly appropriate, and sometimes a test is listed without any measure.

Some branches of the tree terminate in boxes that are empty. These indicate situations for which the authors knew of no appropriate technique - indeed, further statistical development may be needed. If an analysis is to be performed in such a case, it will be necessary to find an alternative
sequence through the decision tree or to consult another source of information.

In many analysis situations it is possible to make alternative decisions about the nature of the variables, relationships, and/or goals, and these may result in the selection of alternative final boxes. It is always possible to use techniques that require less stringent assumptions than the ones originally considered. For example, measures or tests may be used that are appropriate for a weaker scale of measurement, or techniques appropriate for non-additive situations may be used even though the variables actually form an additive system. Note also that non-additive systems can sometimes be handled using an additive technique if an appropriate combination of variables (e.g., pattern variable, product variable) has been formed. Recall also that two-point nominal variables and ranks meet the definition of intervally scaled variables.

Cautionary Comments

1. Weighted data, missing data, small sample sizes, complex sample designs, and capitalization on chance in fitting a statistical model are sources of potential problems in data analysis. The Guide does not deal with these complications. If one of these situations exists, the Guide should be used with caution. (See note 9 in Appendix C for a brief discussion
of sampling errors from complex samples.)
2. The statistical measures in the terminal boxes are descriptive of the particular sample being examined. For some statistical measures, the value obtained will also be a good estimate of the value in the population as a whole, whereas other statistics may underestimate (or overestimate) the population value. In general, the amount of bias is relatively small and sometimes adjustments can be made for it. These adjustments are discussed in some statistics texts (but not in this Guide). If a statistic is a biased estimator of the population value, it is marked in this Guide with an asterisk.
3. In principle, a confidence interval may be placed around any statistic. It is also possible to test the significance of the difference between values of a statistic calculated for two non-overlapping groups. These procedures are not indicated in the Guide but are discussed in standard textbooks.
4. The Guide does not explicitly consider possible transformations of the data such as bracketing, using logarithms, ranking, etc. Transformations may be used to simplify analysis or to bring data into line with assumptions. (For
example, it is often possible to transform scores so that the transformed scores correspond to a normal distribution, constitute an interval scale, or relate linearly to another variable.) Occasionally, it may be wise to eliminate cases with extreme values. For guidance on selecting appropriate transformations, see Kruskal (1978).
5. Common assumptions for inferences based on techniques using one or more intervally scaled variables (particularly when the intervally scaled variable is a dependent variable) include the following: first, that the observations are Independent, i.e., the selection of one case for inclusion In the sample does not affect the chances of any other case being included, and the value of a varlable for one case in no way affects the value of the variable for any other case; second, that the observations are drawn from a population normally distributed on the intervally scaled variable(s); and third, if more than one variable is involved, that the intervally scaled variable(s) have equal variances within categories of the other variable(s), l.e., there is homogeneity of variance. Bivarlate or multivariate normality is also sometimes assumed.

THE DECISION TREE:
QUESTIONS AND ANSWERS LEADING TO APPROPRIATE STATISTICS OR STATISTICAL TECHNIQUES

STARTING POINT

How many variables does the problem involve?

ONE VARIABLE

How do you want to treat the variable with respect to scale of measurement?

- One Interval variable

What do you want to know about the distribution of the variable?

-Blased estimator

TWO INTERVAL VARIABLES

Is a distinction made between a dependent and an independent variable?

(continued from page 6)

- Two Interval variables - No distinction is made between a dependent and an independent variable - The relationship is to be treated as Ilnear - Covariation is to be measured

How many of the variables are dichotomous?

- Biased estimator.
t Both the tetrachoric r and the biserial r depend on a strict assumption of the normality of the continuous variables that have been dichotomized. Furthermore, the sampling error for both coefficients is large when dichotomies are extreme. Nunnally (1978, pages 135-137) advises against the use of these coefficients.
* Pearson's r in this case is mathematically equivalent to a point biserial r; the tests are almost equivalent.

1 Pearson's r in this case is mathematically equivalent to phl (see page 9); the tests are almost equivalent.

TWO ORDINAL VARIABLES

Is a distinction made between a dependent and an independent variable?

- Blased estimator.
t The data may be transformed to ranks and r_{1} or Krippendorff's i used. See page 6.
* These statistics differ with respect to how they treat pairs of cases that fall in the same category on one or both of the variables.
Except in extreme cases (i.e., where any of the statistics equals 0 or 1) the absolute value of gamma will be the highest of the five
statistics, tau a will be the smallest, and tau b, tau c, and Kim's d will be intermediate. This ordering is because gamma ignores all ties (when present in the data-as is usually the case), whereas the other four statistics penalize for tles in the sense of reducing the absolute value of the statistic obtained. Unlike tau b and KIm's d, tau can attain ± 1 even If the two variables do not have the same number of categories. If there are no ties on either variable the five measures are identical. See Goodman and Kruskal (1954), Kendall (1970), Kendall and Stuart (1961), Stuart (1953), and Kim (1971).

TWO NOMINAL VARIABLES

+ In this case, McNemar's test of symmetry is equivalent to Cochran's \mathbf{Q}.

1 In this case, Yule's \mathbf{Q} is equivalent to Goodman and Kruskal's gamma and phi is equivalent to Pearson's product moment r. In general, Q will be higher in absolute value than phi because Q ignores pairs of cases which fall in the same category on one or both of the variables.

- Pearson chl-squares can be corrected for continuity (Yate's correction) but this is controversial. See Camilli and Hopkins (1978).
* McNemar's test of symmetry is approprlate for parallel measures from matched cases as well as for repeated measures on a single set of cases. See "matched samples" in Glossary.
- Two nominal variables - At least one of the variables is not a two-point scale - No distinction is made between a dependent and an Independent variable

1 Pearson chl-squares can be corrected for continuity but this is controversial. See Bradiey et al. (1979).

* McNemar's test of symmetry is appropriate for parallel measures from matched cases as well as for repeated measures on a single set of cases. See "matched samples" In Glossary.

TWO VARIABLES: ONE INTERVAL, ONE ORDINAL

t Jaspen's coefficient is the product moment correlation between the interval variable and a transformation of the ordinal variable. The magnitude of this statistic is sensitive to the assumption of normality.
" Any two-point variable meets the criteria for an Intervally scaled variable.

TWO VARIABLES: ONE INTERVAL, ONE NOMINAL

- Blased estimator.
t The assumptions in note 5 on page 2 may apply.
t If the nominal variable is a two-point scale, the t test is an alternative (because in such case F equals ${ }^{2}$).
1 Omega ${ }^{2}$ applies to the fixed effects model, and the Intraclass correlation coefficient applies to the random effects model. Thus omega ${ }^{2}$ should be used if you want to make inferences only about the specific categories of the nominal variable which appear in the data, whereas the intraclass correlation coefficient should be used If you view the particular categories that appear in the data as a random sample from a larger set of potential categories and you
want to make inferences about the total set of potential categorles. (See Hays, 1973, page 525; Hays denotes the intraclass correlation as p_{i} rather than r_{i}.) In most situations it is more appropriate to use the fixed effects model, l.e., omega ${ }^{2}$. Kelley's epsilon ${ }^{2}$ is used for exactly the same purpose as Hays' omega² but differs very slightly In computation. Hays' omega ${ }^{2}$ was apparently developed
Independently of Kelley's eariler statistic. Kelley's epslion ${ }^{2}$ is precisely equivalent to eta ${ }^{2}$, after eta ${ }^{2}$ is adjusted for degrees of freedom. See Glass and Hakstlan (1969), Kelley (1935), and Hays (1973; page 485).
- Any two-point variable meets the criteria for an intervally scaled varlable.

t The assumptions in note 5 on page 2 may apply.
f If the nominal variabie is a two-point scale, the test is an alternative (because in such case F equals $\mathbf{t}^{\mathbf{2}}$).
- If the nominal variable is a two-point scale, a special form of the t test may be used. (See Hays, 1973, pp. 404 and 410.)
" See "matched samples" in Glossary.
tt In practice, randomization tests are usually only applied when the number of cases is very small. With larger N's the interval varlable is generally treated as an ordinal variable.

TWO VARIABLES: ONE ORDINAL, ONE NOMINAL

Is a distinction made between a dependent and an independent variable?

Are the cases (e.g., people) in one category of the nominal variable matched to the cases in each of the other categories of that variable?**

- Blased estimator.
₹ Measures of strength of relationship that are appropriate for unmatched data can also be used descriptively here.

1 This coefficient implicitly orders the nominal categories. Given n nominal categories, there are nl values for Somers' d. Freeman's theta is equal to the highest of these d's.

1 The nominal variable may be treated as ordinal (in which case go to page 8) or as interval (In which case go to page 11).
** See "matched samples" in Glossary.

- More than two variables - No distinction is made between
dependent and independent variables

Do you want to measure agreement?

How do you want to treat the variables with respect to scale of measurement?

Do you want to test whether the means (or proportions) on all vari-

> | $\begin{array}{l}\text { Kendall's coeffl- } \\ \text { clent of concord- } \\ \text { ance }(\mathrm{W})\end{array}$ |
| :--- |
| For N greater than |
| 7, use χ^{2} test for |
| $\mathrm{W} ;$ for N less than |
| or equal to 7 , re- |
| fer s to a table of |
| critical values of s. |

$$
\left(r_{1}\right)^{*}
$$ of k_{m} to a table of the unit normal curve.

Light's agreement coefficient (k_{m})

Refer critical ratio
Intraclass correla-
tion coefficient
Robinson's A

1 See note 3 in Appendix \mathbf{C}.
" There are varlous chl-square test statistics including Pearson, maximum likelihood, and Neyman.

* Cochran's Q is appropriate for paraliel measures from matched cases as well as for repeated measures on a single set of cases.

Nonadditivity can be represented within additive techniques by using a pattern variable or a product variable. Another possibility is to analyze subgroups separately. See Glossary.

- More than two variables - No distinction is made between dependent and independent variables - Relationships are to be treated as addilive

Do you want to analyze patterns existing among variables or among individual cases (e.g., persons)?

Do you have two or more sets of variables and do you want to measure the strength of the association between those sets?

Do you want to treat the variables as measured on interval scales and relationships among them as Ilnear?

Wilks' lambdat
Roy's greatest root criterion ${ }^{\dagger}$

Pillal-Bartlett v+
t The assumptions in note 5 on page 2 may apply.
t "Two or more groups" may mean distinct sets of individuals, a set of individuals observed on two or more occasions, etc.

Does the analysis involve (a) one group of Individual cases or (b) two or more groups?

Do you want to treat the variables as measured on interval scales and relationships among them as Iinear?

- More than two variables - No distinction is made between dependent and Independent variables - Relationships are to be treated as additive - Patterns among variables are to be analyzed - One group of Individuals

Do you want to explore covariation among the varlables (e.g., to examine their relationships to underlying dimensions) or do you want to find clusters of variables that are more strongly related to one another than to the remaining varlables?

t The assumptions in note 5 on page 2 may apply.

- The variables should be standardized using the combined groups (l.e., the observed group and the prespecifled pattern) as a reference. (Depending on the problem, this may or may not be equivalent to using the correlation matrix for the observed group.) See "standardized variable" in Glossary.
- See note 3 in Appendix C.
- There are various chl-square test statistics including Pearson, maximum likelihood, and Neyman.
- More than two variables - No distinction is made between dependent and independent variables - Relationships are to be treated as additive - Patterns among varlables are to be analyzed - Two or more groups of individuals ${ }^{\text {t }}$

Do you want to explore the relationships among a set of variables in two or more groups simultaneously or do you want to compare the similarity of the patterns of the relationships among a set of variables elther (a) across two or more groups or (b) with a prespecified pattern?

Do you want to treat the varlables as measured on interval scales and the relationships among them

t The assumptions in note 5 on page 2 may apply.
₹ "Two or more groups" may mean distinct sets of Individuals, a set of Individuals observed on two or more occasions, etc.

1 The variables should be standardized using the combined groups as a reference group. (This is not the same as using the correlation matrices for the separate groups.) See "standardized variable" in Glossary.

- More than two variables - A distinction is made between dependent and independent variables - There is more than one dependent variable

- A distinction is made between dependent and independent variables - There is more than one dependent variable and more than one Independent variable - Relationships among the variables are to be treated as additive

Do you want to treat all the dependent and independent variables as interval?

t The assumptions in note 5 on page 2 may apply.

- See Glossary.
- A distinction is made between dependent and Independent variables - There is more than one dependent variable and more than one Independent variable - Relationships among the variables are not to be treated as additive - All the dependent variables are interval

Do you want to treat all the independent variables as nominal and test a set of prespecified relationships?

t The assumptions in note 5 on page 2 may apply.

- Some multivariate analysis of variance techniques assume statistical independence between all pairs of independent variables.
- More than two variables - A distinction is made between dependent and Independent variables - There is one dependent variable - No covariate is used to remove linear effects - Relationships among the variables are not to be treated as additive

- More than two variables - A distinction is made between dependent and Independent variables - There is one dependent variable - No covariate is used to remove linear effects - Relationships among the variables are not to be treated as additive
- A set of prespecified relationships is to be tested - The dependent variable is not to be treated as ordinal

Do you want to treat any of the independent variables as ordinal?

$\stackrel{N}{1}$
Do you want to treat the dependent variable as interval and all the independent variables as nominal and do you want to assume homoscedasticity?

Do you want to do a hierarchical analysis?

* There are various chi-square test statistics Including Pearson, maximum likelihood, and Neyman.
tt Multidimensional contingency table analysis using weighted least squares may be appropriate.
- More than two variables - A distinction is made between dependent and independent varlables - There is one dependent variable - No covariate is used to remove linear effects - Relationships among the varlables are to be treated as additive

How do you want to treat the dependent variable with respect to scale of measurement?

Do you want to treat all the independent varlables as interval?
\square

Do you want to treat the relationships among the independent variables as linear?

Do you want to treat all the relationships as linear?

Dummy variable regression or multiple classification analysis

1 The assumptions in note 5 on page 2 may apply.
t See note 1 in Appendix C.
\$ The type of curvilinear regression referred to here is also known as polynomial regression. See note 4 in Appendix C for further discussion.

I See note 3 in Appendix C.
n There are various chi-square test statistics including Pearson, maximum likelihood, and Neyman.

- More than two variables - A distinction is made between dependent and Independent variables - There is one dependent variable - No covariate is used to remove linear effects - Relationships among the variables are to be treated as additive and linear - All the variables are interval

Does the analysis include at least one intervening variable?

Does the analysis include at least one latent (l.e., unmeasured) varlable?

Do you want a single measure of the relationship between the dependent variable and all the Independent variables taken together?

Do you want a statistic that measures the additional proportion of the total varlance in the dependent variable explainable by each independent variable, over and above what the other independent variables can explain?s

Part correlation ${ }^{2}$
$\left[\mathrm{r}^{2}(2-3, \ldots, k)\right]^{*}$
F test $\left(F \text { equals } t^{2}\right)^{\dagger}$

- Blased estimator.

1 The assumptions in note 5 on page 2 may apply.

* Beta is a standardized version of b. See "standardized coefficient" in Glossary.
- The additional proportion of the total variance explainable by a set of independent variables, over and above what the other independent variables can explain, can be measured by the difference between the \mathbf{R}^{2} 's resulting from two separate multiple correlation analyses.

1 See Glossary.
Do Fisher's r to \mathbf{Z} trans. formation and refer critical ratio of Z to a table
 of the unit normal curve. t I
F test $\left(F \text { equals } t^{2}\right)^{\dagger}$

APPENDIX A
 SOURCES OF FURTHER INFORMATION ABOUT STATISTICS APPEARING IN THIS GUIDE

A brief citation is given below for each statistic and statistical technique that appears in the Guide. A full entry for each cited work appears in the list of references.

Mode McNemar, 1969, p. 14

$$
\begin{aligned}
\text { Distribution of relative frequencies } & \text { Blalock, 1979, p. } 31 \\
\text { Distribution of absolute frequencies } & \text { McNemar, 1969, p. } 5 \\
\text { Median } & \text { McNemar, 1969, p. } 14 \\
\text { Inter-quartile deviation } & \text { McNemar, 1969, p. } 19 \\
\text { N-tiles } & \text { McNemar, 1969, p. } 19
\end{aligned}
$$

Winsorlzed mean
Trimmed mean Hampel estimate of location

Biweight mean
Mean
Median
Standard deviation Coefficient of varlation

Dixon and Massey, 1969, p. 330
Andrews et al., 1972, p. 2B1
Andrews et al., 1972, p. 2C3
Mosteller and Tukey, 1977, p. 205
McNemar, 1969, p. 16
McNemar, 1989, p. 14
Hays, 1973, p. 238
Blalock, 1979, p. 84
Range

Skewness \quad| McNemar, 1969, p. 19 |
| :--- |
| McNemar, 1969, p. 25 |

Paga 6

Regression coefficient
F test for regression coefficlent
Coefficient from curvilinear regression
F test for coefficient from curvilinear regression
t test for paired observations
Roblnson's A
Intraciass correlation cofficient
F test for Robinson's A (translate to intraclass correlation coefficient and test as below)

F test for Intraclass correlation
Krippendorf's i
Hays, 1973, pp. 623, 630
Hays, 1973, p. 647
Draper and Smith, 1966, p. 129; Hays, 1973, p. 675
Hays, 1973, p. 680
Hays, 1973, p. 424
Robinson, 1957
McNemar, 1969, p. 322
McNemar, 1969, p. 322
McNemar, 1969, p. 322
Krippendorif, 1970, p. 143
Page 7
Pearson's product moment r Hays, 1973, p. 623

Fisher's r to Z transformation and the critical ratio of $Z \quad$ Hays, 1973, p. 662

Biserial r	McNemar, 1969, p. 215; Nunnally, 1978, p. 135
Critical ratio for biserial r	McNemar, 1969, p. 217
Critical ratio for polnt biserial r	McNemar, 1969, p. 219
Tetrachoric r	McNemar, 1969, p. 221; Nunnally, 1978, p. 136
Critical ratio for tetrachoric r	McNemar, 1969, p. 223
Critical ratio for phi	McNemar, 1969, p. 227

Page 8

Somers' d	Somers, 1962
Critical ratio of S	Kendall, 1970, p. 52
Standard error of S, assuming ties	Kendall, 1970, p. 55
Table of critical values of S , assuming tles	Harshbarger, 1971, p. 535
Spearman's rho	Slegel, 1956, p. 202
Critical ratio for Spearman's rho	Slegel, 1956, p. 212
Table of critical values of rho	Slegel, 1956, p. 284
Kendall's tau a	Kendall, 1970, p. 5
Standard error of S, assuming no tles	Kendall, 1970, p. 51
Table of critical values of S , assuming no ties	Kendall, 1970, p. 173
Kendall's tau b	Kendall, 1970, p. 35
Kendall's tau c	Kendall, 1970, p. 47
Goodman and Kruskal's gamma	Hays, 1973, p. 800
Kim's d	Kim, 1971, p. 899

Page 9

McNemar's test of symmetry Slegel, 1956, p. 63 (when both varlables are two-point scales, McNemar's test of symmetry and McNemar's test for the significance of changes are equivalent); Bowker, 1948
Yule's Q Yule and Kendall, 1957, p. 30
Phl McNemar, 1969, p. 225

| Critical ratlo of phi | McNemar, 1969, p. 227 |
| ---: | :--- | :--- |
| Fisher's exact test | Slegel, 1956, p. 96 |
| Pearson chl-square | Hays, 1973, p. 735 |
| Goodman and Kruskal's tau b | Blalock, 1979, p. 307 |
| Critical ratio of Goodman and Kruskal's tau b | Goodman and Kruskal, 1972, p. 417 |
| Asymmetric lambda | Hays, 1973, p. 747 |
| Critical ratlo of lambda | Goodman and Kruskal, 1963, p. 316 |

Page 10

Scott's coefficient of agreement	Krippendorff, 1970, p. 142
Cohen's agreement coefficients (kappas)	Cohen, 1960; Cohen, 1968
Critical ratio for Cohen's kappas	Fleiss, Cohen, and Everitt, 1969
McNemar's test of symmetry	Bowker, 1948
Contingency coefficient	Hays, 1973, p. 745
Pearson chl-square	Hays, 1973, p. 730
Cramér's V	Hays, 1973, p. 745 (Hays calls it Cramér's statistic); Srikantan, 1970
Symmetric lambda	Hays, 1973, p. 749
Critical ratio of symmetric lambda	Goodman and Kruskal, 1963, p. 321

Page 11

Jaspen's coefficient of multiserial correlation	Freeman, 1965, p. 131			
Fisher's r to Z transformation and the critical ratio of Z	Hays, 1973, p. 662; Harshbarger, 1971, p. 395			
Mayer and Robinson's Myu	Mayer and Robinson, 1977	\quad	Fisher's r to Z transformation and the critical ratio of Z	Mayer and Robinson, 1977; Hays, 1973, p. 662
---:	:---			

Page 12

$$
\begin{aligned}
\text { Eta }^{2} & \text { Hays, 1973, p. } 683 \\
\text { Omega }^{2} & \text { Hays, 1973, p. } 484 \\
\text { Intraclass correlation coefficient } & \text { Hays, 1973, p. } 535
\end{aligned}
$$

Kelley, 1935; Glass and Hakstian, 1969
Hays, 1973, p. 471

Pages 13-14

$$
\begin{aligned}
& \begin{array}{r}
\text { Analysis of variance }
\end{array} \begin{array}{l}
\text { Hays, 1973, p. 457 } \\
\text { F test for analysis of variance } \\
\text { Welch statistic }
\end{array} \\
& \text { Hays, 1973, p. 471 } \\
& \text { Brown and Forsythe, 1974a } \\
& \text { Brown-Forsythe statistic } \text { Brown and Forsythe, 1974a } \\
& \text { t test } \text { Hays, 1973, pp. 404, 410 } \\
& \text { Bartlett's test } \text { Kirk, 1969, p. 61 } \\
& \text { Levene's W } \text { Brown and Forsythe, 1974b } \\
& \text { Walsh test } \text { Slegel, 1956, p. 83 } \\
& \text { Randomization test for matched pairs } \text { Bradiey, 1968, p. 76; Slegel, 1956, p. 88 } \\
& \text { Randomization test for two independent samples } \text { Bradiey, 1968, p. 78; Siegel, 1956, p. 152 } \\
& \text { Randomization test for matched samples } \text { Bradiey, 1968, p. 80 } \\
& \text { Randomization test for independent samples } \text { Bradiey, 1988, p. 80 }
\end{aligned}
$$

Page 15

Signtest Siegel, 1956, p. 68
Wilcoxon slgned-rank test Slegel, 1956, p. 75
Somers' d Somers, 1962
Critical ratio of S Kendall, 1970, p. 52
Standard error of S, assuming ties Kendall, 1970, p. 55
Table of critical values of S , assuming tie
Harshbarger, 1971, p. 535
Median test Slegel, 1956, p. 111
Mann-Whitney U
Slegel, 1956, p. 116
Kolmogorov-Smirnov two sample tes
Siegel, 1956,
p. 127

Runs test Slegel, 1956, p. 136
Friedman test Hays, 1973, p. 785

Freeman's coefficient of differentlation	Freeman, 1965, p. 112
Kruskal-Wallis test	Siegel, 1956, p. 184
Median test (for more than two groups)	Siegel, 1956, p. 179

Page 16

Covariance analysis	Snedecor and Cochran, 1967, p. 419
F test for covariance analysis	Snedecor and Cochran, 1967, p. 424

Page 17

Light's agreement coefficlent	Light, 1971
Critical ratlo of Light's agreement coefficlent	Light, 1971
Kendall's coelficient of concordance (W)	Slegel, 1956, p. 229
Chl-square test for W	Slegel, 1956, p. 236
Table of critical values of sin the Kendall coefficient of concordance	Slegel, 1956, p. 286
Intraclass correlation coefficlent	McNemar, 1969, p. 322
Roblnson's A	Robinson, 1957
F test for intraclass correlation coefficient	McNemar, 1969, p. 322
F test for Robinson's A (translate to intraclass correiation and test as above)	Robinson, 1957, p. 23; McNemar, 1969, p. 322
Cochran's Q	Slegel, 1956, p. 161
Analysis of variance with repeated measures	McNemar, 1969, p. 338
F test for analysis of varlance with repeated measures	McNemar, 1969, p. 340
Multidimensional contingency table analysis	Statistics Department, University of Chicago, 1973 (ECTA); Landis et al., 1876 (GENCAT); Flenberg, 1977 (General)
Chl-square tests	Flenberg, 1977, p. 36 (Pearson and maximum likelihood)

Page 18

Canonical correlation Cooley and Lohnes, 1971, p. 188; Harris, 1975, p. 132

WIIks' lambda	Cooley and Lohnes, 1971, p. 175; Morrison, 1976, p. 222; Harris, 1975, p. 143
Roy's greatest root criterion	Morrison, 1976, p. 178; Harris, 1975, pp. 103, 143
Pillal-Bartiett V	Morrison, 1976, p. 223
Q-type factor analysis	Overall and Klett, 1972, p. 201; Gorsuch, 1974, p. 279
Clustering technqiues such as single linkage, complete linkage, average linkage, K -means	Sneath and Sokal, 1973

Pages 19-20

Factor analysis of correlation matrix
Factor analysis of varlance-covarlance matrix
Confirmatory factor analysis of a standardized variance-covariance
matrix
Maximum likelihood chl-square
Confirmatory factor analysis of variance-covariance matrix
Maximum likelihood chi-square
Non-metric multidimensional scaling techniques

Clustering tec Chl-square tests
linkage, complete linkage average linkage, K-means

Three-way non-metric multidimensional scaling techniques

Confirmatory factor analysis of standardized variance-covariance matrices
Maximum likelihood chi-square
Confirmatory factor analysis of variance-covariance matrices
Maximum likelihood chl-square
Page 22

Multivariate analysis of variance	Cooley and Lohnes, 1971, p. 223; Harris, 1975, p. 101; Bock and Haggard, 1968 Wilks' lambda Cooley and Lohnes, 1971, p. 175; Morrison, 1976, p. 222; Harris, 1975, p. 109; Olson, 1976
Roy's greatest root criterion	Morrison, 1976, p. 178; Harris, 1975, pp. 103, 109; Olson, 1976
Pillal-Bartiett V	Morrison, 1976, p. 223; Olson, 1976
Profile analysis	Morrison, 1976, pp. 153, 205
Wilks' lambda	Morrison, 1976, p. 222
Roy's greatest root criterion	Morrison, 1976, p. 178
Pilial-Bartlett V	Morrison, 1976, p. 223

Kruskal and Wish, 1978, p. 60 (General); Carroll and Chang, 1970 (INDSCAL); Harshman, 1970 (PARAFAC);
Lingoes and Borg, 1976 (PINDIS);
Carroll, Pruzansky, and Kruskal, 1980 (CANDELINC);
Ramsay, 1977 (MULTISCAL);
Takane, Young, and DeLeeuw, 1977 (ALSCAL);
Sands and Young, 1980 (ALSCOMP3)
Gorsuch, 1974, pp. 116, 251 (General);
Sobrbom and Jöreskog, 1976 (COFAMM)
Gorsuch, 1974, pp. 118, 139; Sorbom and Jöreskog, 1976 (COFAMM)
Gorsuch, 1974, pp. 116, 251 (General);
Sorbom and Joreskog, 1976 (COFAMM)
Gorsuch, 1974, pp. 118, 139 ;
Sörbom and Joreskog, 1976 (COFAMM)

Cooley and Lohnes, 1971, p. 223;
75, p. 101

Cooley and Lohnes, 1971, p. 175;
Morrison, 1976, p. 222;
Morrison, 1976, p. 178;
Harris, 1975, pp. 103, 109; Olson, 1976
n, 1976

Morrison, 1976, p. 222

Morrison, 1976, p. 223

Structural models with latent variables
Path analysis
Canonical correlation

Jöreskog and Sörbom, 1978
Kerlinger and Pedhazur, 1973, p. 305
Cooley and Lohnes, 1971, p. 168;
Harris, 1975, p. 132

Wilks' lambda	Cooley and Lohnes, 1971, p. 175; Morrison, 1976, p. 222;
Horris, 1975, p. 143	

Page 24

Multivariate analysis of variance	Cooley and Lohnes, 1971, p. 223; Harris, 1975, p. 118; Bock and Haggard, 1968
Wliks' lambda	Cooley and Lohnes, 1971, p. 175; Morrison, 1976, p. 222; Harris, 1975, p. 109; Olson, 1976
Roy's greatest root criterion	Morrison, 1976, p. 178; Harris, 1975, pp. 103, 109; Olson, 1976
Plilal-Bartlett V	Morrison, 1976, p. 223; Olson, 1976
Multivariate binary segmentation techniques	Glllo, 1972 (MAID); Gllio and Shelley, 19

Page 25
Binary segmentation techniques
Multidimensional contingency table analysis based on the cumulative logistic distribution

Chi-square tests

Sonquist, Baker, and Morgan, 1974 (SEARCH, formerly known as AID)
Bock, 1975, p. 541 (General);
Bock and Yates, 1973 (MULTIQUAL)
Bock, 1975, p. 518 (Pearson and maximum likelihood)

Page 26

Analysis of variance	McNemar, 1969, p. 325
F test for analysis of variance	McNemar, 1969, p. 349
Multidimensional contingency table analysis	Statistics Department, University of Chicago, 1973 (ECTA); Flenberg, 1977 (General)
Chl-square tests	Flenberg, 1977, p. 36 (Pearson and maximum likelihood)
gency table analysis technique allowing an	Landis et al., 1978 (GENCAT)

Chi-square tests
Analysis of variance using weighted least squares

Pages 27-28

Multiple discriminant function
Wilks' lambda
Roy's greatest root criterion

PIIlai-Bartlett V
Dummy variable regression using weighted least squares or maximum likelihood

Dummy variable regression or multiple classification analysis

Multidimensional contingency table analysis

Chi-square tests
Multiple curvilinear regression
Wilks' lambda

Fienberg, 1977, p. 36 (Pearson and maximum likelihood)
Draper and Smith, 1966, p. 77; Rao, 1965, p. 178

Cooley and Lohnes, 1971, p. 243
Cooley and Lohnes, 1971, p. 248
Morrison, 1976, p. 178;
Harris, 1975, pp. 103, 109
Morrison, 1976, p. 223
Draper and Smith, 1966, pp. 77, 134 (Weighted least squares - General); DuMouchel, 1974, 1976 (Maximum likelihood-DREG);
Landis et al., 1967 (GENCAT)
Draper and Smith, 1966, p. 134;
Andrews et al., 1973;
Kerlinger and Pedhazur, 1973, p. 101
Andrews and Messenger, 1973 (MNA);
Statistics Department, University of Chicago, 1973 (ECTA); Landis et al., 1976 (GENCAT); Fienberg, 1977 (General)
Flenberg, 1977, p. 36 (Pearson and maximum likelihood)
Neter and Wasserman, 1974, p. 273

Pages 29-30

Structural models with latent variables
Path analysis
Multiple correlation
F test for multiple correlation
Regression coelficient
F test for regression coefficien
Part correlation
F test for part correlation

Jöreskog and Sơrbom, 1978
Kerlinger and Pedhazur, 1973, p. 305
Hays, 1973, p. 707
Hays, 1973, p. 709
Hays, 1973, pp. 704, 708;
Kerlinger and Pedhazur, 1973, pp. 56, 61
Kerlinger and Pedhazur, 1973, p. 66
McNemar, 1969, p. 185
McNemar, 1969, p. 321

Partlal correlation McNemar, 1969, p. 183

Fisher's r to Z transformation and the critical ratio of $Z \quad$ McNemar, 1969, p. 185
F test for partial correlation McNemar, 1969, p. 185

APPENDIX B

PROGRAMS THAT COMPUTE STATISTICS LISTED IN THE GUIDE

For many of the statistics and statistical techniques that appear in the Guide, there exist one or more programs that calculate the statistic or use the technique. The entries in this Appendix are intended to guide the reader to an appropriate program or command. In some cases, the program or command listed provides a functional approximation to the indicated statistic (for example, many programs give probability values rather than critical ratios). An asterisk following a program name means that the statistic, while not printed, can be readily obtained or, in more complicated cases, that there is documentation in the User's Manual
explaining how to obtain it.
In the following table, at least one program per column is cited for each entry whenever possible. If multiple programs could be cited, only the program or programs most frequently used for the particular purpose are listed. The appropriate program, command, or procedure was determined by a review of the published documentation for each system; it is therefore possible that some errors, particularly of omission, may have been made. It is important to note the dates of the documentation (see References) as program packages are constantly being improved and augmented.

	OSIRIS	MIDAS	SPSS	SAS	BMDP	OTHER
Page 4						
Mode	TABLES	HISTOGRAM ONEWAY	FREQUENCIES	UNIVARIATE	P2D	-
Distribution of relative frequencles	TABLES	HISTOGRAM ONEWAY	FREQUENCIES	UNIVARIATE CHART	P2D	-
Distribution of absolute frequencies	TABLES	HISTOGRAM ONEWAY	FREQUENCIES	UNIVARIATE CHART	P2D	-
Median	TABLES	DISTRIBUTION	FREQUENCIES	UNIVARIATE	P2D	-
Inter-quartile deviation	TABLES*	-	-	UNIVARIATE**	P2D	-
N -tiles	TABLES	DISTRIBUTION	-	UNIVARIATE	-	-
Page 5						
Winsorized mean	-	-	-	-	P7D	-
Trimmed mean	-	-	-	-	P2D	-
Hampel estimate of location	-	-	-	-	P2D	-
Blweight mean	-	-	-	-	P2D	-
Mean	TABLES USTATS	DESCRIBE	CONDESCRIPTIVE FREQUENCIES	UNIVARIATE MEANS	$\begin{aligned} & \text { P1D } \\ & \text { P2D } \end{aligned}$	-
Median	TABLES	DISTRIBUTION	FREQUENCIES	UNIVARIATE	P2D	-
Standard deviation	TABLES USTATS	DESCRIBE	CONDESCRIPTIVE FREQUENCIES	UNIVARIATE MEANS	$\begin{aligned} & \text { P1D } \\ & \text { P2D } \end{aligned}$	-
Coefficient of variation	-	-	-	UNIVARIATE MEANS	P1D	-

* SAS prints $Q_{3}-Q_{1}$; our reference refers to $\left(Q_{3}-Q_{1}\right) / 2$.

	OSIRIS	MIDAS	SPSS	SAS	BMDP	OTHER
Range	TABLES USTATS	describe	CONDESCRIPTIVE FREQUENCIES	UNIVARIATE	$\begin{aligned} & \text { P10 } \\ & \text { P2D } \end{aligned}$	-
Skewness	tables	describe	CONDESCRIPTIVE FREQUENCIES	UNIVARIATE MEANS	P2D	-
Critical ratio of skewness measure	-	-	-	-	P2D	-
Table for testing skewness	-	-	-	-	-	-
Kurtosis	tables	describe	CONDESCRIPTIVE, FREQUENCIES	UNIVARIATE MEANS	P2D	-
Critical ratio of kurtosis measure	-	-	-	-	P2D	-
Table for testing kurtosis	-	-	-	-	-	-
Geary's criterion for kurtosis	-	-	-	-	-	-
Distribution of relative frequencies	TABLES	HISTOGRAM ONEWAY	frequencies	UNIVARIATE CHART	P2D	-
Distribution of absolute frequencies	TABLES	HISTOGRAM ONEWAY	FREQuencies	UNIVARIATE CHART	P2D	-
N -tiles	TABLES	DISTRIBUTION	-	UNIVARIATE	-	-
Kolmogorov-Smirnov one sample test	-	-	NPAR	-	-	-
Lilliefors test	-	\cdots	-	UNIVARIATE	-	-
Chi-square goodness-of-fit test	-	-	NPAR	FREQ	-	-

Page 6

Regression coefficient	REGRESSN	REGRESSION	REGRESSION \dagger	$\begin{aligned} & \text { GLM } \\ & \text { REG } \end{aligned}$	$\begin{aligned} & \text { P1R } \\ & \text { P4F } \end{aligned}$
F test for regression coefficient	REGRESSN	REGRESSION	REGRESSION ${ }^{\dagger}$	$\begin{aligned} & \text { GLM } \\ & \text { REG } \end{aligned}$	P1R
Coefficient from curvilinear regression	-	POLY	$\begin{aligned} & \text { REGRESSION* }{ }^{\bullet} \dagger \\ & \text { ONEWAY } \end{aligned}$	GLM	P5R
F test for coefficient from curvilinear regression	-	POLY	REGRESSION* ${ }^{\dagger}$ ONEWAY	GLM	P5R
I test for paired observations	-	PAIR	T-TEST	MEANS \ddagger	P3D
Robinson's A	-	-	-	-	-
Intraclass correlation coefficient	-	ANOVA*	-	-	-
F test for Robinson's A (translate to intraciass correlation coefficient and test as below)	-	-	-	-	-
F test for intraclass correlation coefflclent	-	ANOVA	-	-	-
Krippendorif's 「	-	-	-	-	-
Page 7					
Pearson's product moment r	MDC	CORRELATE MCORR	PEARSON CORR CROSSTABS	CORR	$\begin{aligned} & \text { P8D } \\ & \text { P4F } \end{aligned}$
Fisher's r to Z transformation and the critical ratio of Z	MDC	CORRELATE MCORR	PEARSON CORR CROSSTABS	CORR	-
Biserial r	-	-	-	-	-

[^0]| | OSIRIS | MIDAS | SPSS | SAS | BMDP | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical ratio for biserial r | - | - | - | - | - | - |
| Critical ratio for point biserial r | - | - | - | - | - | - |
| Tetrachoric r | - | - | - | - | P4F | - |
| Critical ratio for tetrachoric r | - | - | - | - | P4F | - |
| Critical ratio for phi | TABLES* | TWOWAY* | CROSSTABS* | FREQ* | P4F* | - |
| Page 8 | | | | | | |
| Somers' d | - | - | CROSSTABS | FREQ | P4F | - |
| Critical ratio of S | tables | - | CROSSTAES NONPAR CORR | FREQ | P4F | - |
| Standard error of \mathbf{S}, assuming ties | - | - | - | - | - | - |
| Table of critical values of S , assuming ties | - | - | - | - | - | - |
| Spearman's tho | - | RCORA | NONPAR CORR | FREQ | P4F | - |
| Critical ratio for Spearman's rho | - | RCORR | NONPAR CORR | FREQ | P4F | - |
| Table of critical values for tho | - | - | - | - | - | - |
| Kendall's tau a | tables | - | NONPAR CORR | - | - | - |
| Standard error of
 S , assuming no ties | - | - | - | - | - | - |

Table of critical values of S, assuming no ties

Kendall's tau b	TABLES	RCORR TWOWAY	CROSSTABS	FREQ CORR	P4F
Kendall's tau c	TABLES	-	CROSSTABS	FREQ**	P4F**
Goodman and Kruskal's gamma	TABLES	$\begin{aligned} & \text { RCORR } \\ & \text { TWOWAY } \end{aligned}$	CROSSTABS	FREQ	P4F
KIm's d	-	-	-	-	
Page 9					
McNemar's test of symmetry	-	TWOWAY	NPAR	-	P4F
Yule's Q	-	-	-	-	P4F
Phi	TABLES \dagger	TWOWAYt	CROSSTABS	FREQ ${ }^{\dagger}$	P4F
Critical ratio of phi	TABLES*	TWOWAY*	CROSSTABS*	FREQ*	P4F*
Fisher's exact test	-	TWOWAY	CROSSTABS	-	P4F
Pearson chl-square	TABLES	TWOWAY	CROSSTABS	FREQ	P4F
Goodman and Kruskal's tau b	-	TWOWAY	-	-	P4F
Critical ratio of Goodman and Kruskal's tau b	-	-	-	-	-
Asymmetric lambda	TABLES	TWOWAY	CROSSTABS	FREQ	P4F
Critical ratio of lambda	TABLES	-	-	FREQ	P4F
Page 10					
Scott's coefficient of agreement	-	-	-	-	-

* SAS and BMDP refer to this as Stuart's tau c.
t For two dichotomous variables, Cramér's V (in MIDAS, Cramér's phi) is equivalent to phi.

	OSIRIS	MIDAS	SPSS	SAS	BMDP	OTHER
Cohen's agreement coefficients (kappas)	TABLES	-	-	-	-	-
Critical ratio for Cohen's kappas	tables	-	-	-	-	-
McNemar's test of symmetry	-	-	-	-	P4F	-
Contingency coefficient	TABLES	TWOWAY	CROSSTABS	FREQ	P4F	-
Pearson chl-square	TABLES	twoway	CROSSTABS	FREQ	P4F	-
Cramer's V	TABLES	TWOWAY	CROSSTABS	FREQ	P4F	-
Symmetric lambda	tables	twoway	CROSSTABS	FREQ	P4F	-
Critical ratio of symmetric lambda	tables	-	CROSstabs	FREQ	P4F	-
Page 11						
Jaspen's coefficient of multiserial correlation	-	-	-	-	-	-
Fisher's r to Z transformation and the critical ratio of \mathbf{Z}	-	-	-	-	-	-
Mayer and Robinson's $\mathrm{Myu}_{\mathrm{yu}}$	-	-	-	-	-	-
Fisher's r to Z transformation and the critical ratio of \mathbf{Z}	-	-	-	-	-	-
Page 12						
Eta ${ }^{2}$	ANOVA MCA	ANOVA	BREAKDOWN ANOVA	$\begin{gathered} \text { GLM } \\ \text { ANOVA } \end{gathered}$	-	-

Omega ${ }^{2}$	-	-	-	$\begin{gathered} \text { ANOM } \\ \text { ANOVA } \end{gathered}$	-	-
Intraclass correlation coefficient	-	ANOVA*	-	$\begin{gathered} \text { GLM } \\ \text { ANOVA } \end{gathered}$	-	-
Kelley's epsilon ${ }^{2}$	ANOVA** MCA**	-	-	-	-	-
F test for eta ${ }^{2}$, omega ${ }^{2}$, Kelley's epsilion ${ }^{2}$, and Intraciass correlation coefficient	Anova	ANOVA	BREAKDOWN ANOVA	$\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$	P70*	-

Pages 13-14

Analysis of variance	ANOVA	ANOVA	ANOVA ONEWAY BREAKDOWN MANOVA	$\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$	$\begin{aligned} & \text { P1V } \\ & \text { P7D } \end{aligned}$	-
F test for analysis of variance	ANOVA	ANOVA	\qquad	$\begin{gathered} \text { GLM } \\ \text { ANOVA } \end{gathered}$	$\begin{aligned} & \text { P1V } \\ & \text { P7D } \end{aligned}$	-
Welch statistic	-	-	-	-	P70	-
Brown-Forsythe statistic	-	-	-	-	P70	-
t test	-	-	t-TEST	t-TESt	P70	-
Bartieft's test	-	ANOVA	ONEWAY MANOVA	DISCRIM	P9D	-
Levene's W	-	-	-	-	P7D	-
Walsh test	-	-	-	-	-	-
Randomization test for matched pairs	-	-	-	-	-	-
Randomization test for two Independent samples	-	-	-	-	-	-
Randomization test for matched samples	-	-	-	-	-	-

* In OSIRIS, Kelley's epsilon² is labelled adjusted etar

| | OSIRIS | MIDAS | SPSS | SAS | BMDP | OTHER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Page 16

Covarlance analysis	MANOVA	COVAR	ANOVA MANOVA	GLM	$\begin{aligned} & \text { P1V } \\ & \text { P2V } \\ & \text { P4V } \end{aligned}$
F test for covariance analysis	MANOVA	COVAR	ANOVA MANOVA	GLM	$\begin{aligned} & \mathrm{P} 1 \mathrm{~V} \\ & \mathrm{P} 2 \mathrm{~V} \\ & \mathrm{P4V} \end{aligned}$
Page 17					
Light's agreement coefficient	-	-	-	-	-
Critical ratio of Light's agreement coefficient	-	-	-	-	-
Kendall's coefficient of concordance (W)	-	RCORR	-	-	P3S
Chi-square test for W	-	RCORR	-	-	P3S
Table of critical values of s in the Kendall coefficient of concordance	-	-	-	-	-
Intraclass correlation coefficlent	-	ANOVA*	-	-	-
Robinson's A	-	-	-	-	-
F test for intraciass correlation coefficient	-	ANOVA	-	-	-
F test for Robinson's A (translate to intraclass correlation and test as above)	-	-	-	-	-
Cochran's Q	-	-	NPAR RELIABILITY	-	-
Analysis of variance with repeated measures	-	-	RELIABILITY MANOVA	GLM	$\begin{aligned} & \mathrm{P} 2 \mathrm{~V} \\ & \mathrm{P4V} \end{aligned}$

[^1]| | OSIRIS | MIDAS | SPSS | SAS | BMDP | OTHER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F test for analysis of variance with repeated measures | - | - | RELIABILITY ANOVA | $\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$ | $\begin{aligned} & \mathrm{P} 2 \mathrm{~V} \\ & \mathrm{P4V} \end{aligned}$ | - |
| Multidimensional contingency table analysis | - | - | - | FUNCAT | P4F | $\begin{aligned} & \text { ECTA } \\ & \text { GENCAT } \end{aligned}$ |
| Chi-square tests | - | - | - | FUNCAT | P4F | ECTA GENCAT |
| Page 18 | | | | | | |
| Canonical correlation | - | CANONICAL | CANCORR | CANCORR | P6M | - |
| Wilks' lambda | - | - | CANCORR | CANCORR | | - |
| Roy's greatest root criterion | - | CANONICAL | - | CANCORR | - | - |
| Pillal-Bartlett V | - | - | - | CANCORR | - | - |
| Q-type factor analysis | FACTAN | FACTOR | FACTOR | FACTOR | P4M | - |
| Clustering techniques such as single linkage, complete IInkage, average linkage, K-means | CLUSTER | CLUSTER | - | CLUSTER
 FASTCLUS | $\begin{aligned} & \text { P2M } \\ & \text { PKM } \end{aligned}$ | - |
| Pages 19-20 | | | | | | |
| Factor analysis of correlation matrix | FACTAN | FACTOR | FACTOR | FACTOR | P4M | - |
| Factor analysis of variance-covariance matrix | - | FACTOR | - | FACTOR | P4M | - |

Confirmatory factor analysis of a standardized variancecovariance matrix	-	ROTATE	-	-	-	COFAMM
Maximum Ilkelihood chl-square	-	-	-	-	-	COFAMM
Confirmatory factor analysis of variancecovarlance matrix	-	ROTATE	-	-	-	COFAMM
Maximum likelihood chi-square	-	-	-	-	-	COFAMM
Non-metric multidimensional scaling techniques	MINISSA	-	-	ALSCAL	-	MINISSA MDSCAL TORSCA KYST ALSCAL
Multidimensional cogntegency table anialyols	-	-	-	FUNCAT	P4F	ECTA GENCAT
Ch. aquare tests	-	-	-	FUNCAT	P4F	ECTA
Clustering techniques such as single linkage, complete IInkage, average linkage, K-means	Cluster	CLUSTER	-	VARCLUS	P1M	-
		-	-		-	-
multidimensional scalling techniques				ALSCAL	-	INDSCAL PARAFAC PINDIS CANDELINC MULTISCAL ALSCAL ALSCOMP3

	OSIRIS	MIDAS	SPSS	SAS	BMDP	OTHER
Confirmatory factor analysis of standardized variance-covariance matrices	-	-	-	FACTOR	-	COFAMM
Maximum likelihood chi-square	-	-	-	FACTOR	-	COFAMM
Confirmatory factor analysis of variancecovariance matrices	-	-	-	FACTOR	-	COFAMM
Maximum likelihood chl-square	-	-	-	FACTOR	-	COFAMM
Page 22						
Multivariate analysis of variance	MANOVA	MANOVA	MANOVA	$\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$	P4V	-
Wilks' lambda	MANOVA	-	MANOVA	$\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$	P4V	-
Roy's greatest root criterion	-	MANOVA	MANOVA	GLM ANOVA	P4V	-
Pillai-Bartlett V	-	-	MANOVA	$\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$	-	-
Profile analysis	-	PROFILE	MANOVA	$\begin{aligned} & \text { GLM } \\ & \text { ANOVA } \end{aligned}$	P4V	-
Wiliks' lambda	-	-	MANOVA	$\begin{gathered} \text { GLM } \\ \text { ANOVA } \end{gathered}$	P4V	-
Roy's greatest root criterion	-	Profile	MANOVA	GLM ANOVA	P4V	-
Pillal-Bartiett V	-	-	MANOVA	GLM ANOVA	-	-

Page 23

	OSIRIS	MIDAS	SPSS	SAS	BMDP	OTHER
F test for analysis of variance	-	-	ANOVA MANOVA	GLM	P1V	-
Multidimenslonal contingency table analysis	-	-	-	FUNCAT	P4F	ECTA
Chi-square tests	-	-	-	FUNCAT	P4F	ECTA
Multidimensional contingency table analysis technique allowing an unconstrained design matrix	-	-	-	FUNCAT	-	gencat
Chi-square tests	-	-	-	FUNCAT	-	GENCAT
Analysis of variance using weighted least squares	-	-	-	GLM	P2V	-
Pages 27-28						
Multiple discriminant function	-	DISCRIMINANT SEPARATE	discriminant	DISCRIM CANDISC	P7M	-
Wiliks' lambda	-	-	DISCRIMINANT	CANDISC	P7M	-
Roy's greatest root criterion	-	-	-	CANDISC	-	-
Pillal-Bartlett V	-	-	-	CANDISC	-	-
Dummy variable regression using weighted least squares or maximum likelihood	DREG	-	-	FUNCAT	$\begin{aligned} & \text { P3R* } \\ & \text { PAR } \end{aligned}$	GENCAT

Dummy variable regression or multiple classification analysis	$\begin{gathered} \text { REGRESSN** } \\ \text { MCA } \end{gathered}$	REGRESSION* SELECT*	REGRESSION*, \dagger ANOVA	GLM ${ }^{*}$	P1R*	-
Multidimensional contingency table analysis	MNA	-	-	FUNCAT	P4F	ECTA GENCAT
Chi-square tests	-	-	-	FUNCAT	P4F	$\begin{aligned} & \text { ECTA } \\ & \text { GENCAT } \end{aligned}$
Multiple curvilinear regression	-	-	REGRESSION* ${ }^{\dagger}$ MANOVA	GLM	P1R*	gencat
Pages 29-30						
Structural models with latent variables	-	-	-	\sim	-	LISREL
Path analysis	-	-	REGRESSION* ${ }^{\dagger}$	SYSREG	-	-
Multiple correlation	REGRESSN	REGRESSION	REGRESSION ${ }^{\dagger}$	$\begin{aligned} & \text { GLM } \\ & \text { REGG } \end{aligned}$	P1R	-
F test for multiple correlation	REGRESSN	REGRESSION	REGRESSION \dagger	$\begin{aligned} & \text { GLM } \\ & \text { REG } \end{aligned}$	P1R	-
Regression coefficient	REGRESSN	REGRESSION	REGRESSION ${ }^{\dagger}$	$\begin{aligned} & \text { GLM } \\ & \text { RFG } \end{aligned}$	P1R	-
F test for regression coefficient	REGRESSN	REGRESSION	REGRESSION ${ }^{\dagger}$	$\begin{aligned} & \text { GLM } \\ & \text { REG } \end{aligned}$	P1R	-
Part correlation	REGRESSN**	REGRESSION	REGRESSION \dagger	-	-	-
F test for part correlation	REGRESSN	REGRESSION	REGRESSION* ${ }^{\dagger}$	-	-	-
Partial correlation	PARTIALS REGRESSN	REGRESSION	PARTIAL CORR REGRESSION ${ }^{\dagger}$	$\begin{aligned} & \text { GLM } \\ & \text { REG } \end{aligned}$	P6R	-
Fisher's r to Z transformation and the critical ratio of \mathbf{Z}	-	-	-	-	-	-
F test for partial correlation	REGRESSN	REGRESSION	PARTIAL CORR REGRESSION ${ }^{\dagger}$	$\begin{aligned} & \text { GLM } \\ & \text { REG } \end{aligned}$	-	-

[^2]
APPENDIX C

SOME NEW OR RARELY USED STATISTICAL TECHNIQUES

There are in the statistical literature many statistical techniques that are not included in this Guide for various reasons - they may be new and not yet well-known, or they may be old and seldom used. Some of these techniques are noted below.

1. Multivariate analysis of ordinal data

Developing methods of multivariate analysis appropriate to the uniquely ordinal properties of ordinal scales, including constructing coefficients that measure multiple and partial assoclation among ordinal measures, has been extensively discussed in the methodological literature of the 1970s but has proven to be a difficult problem. The issues are not yet resolved. Useful discussions of the problems, and references to other relevant literature, can be found in Blalock (1975), Kim (1975), and Mayer and Robinson (1977). From a practical standpoint, most analysts who desire to perform a multivariate analysis with ordinal measures disregard the uniquely ordinal aspects of their measures and treat them as either nominal scales or interval scales.

2. Developments in nonmetric mulitilimensional scaling.

Nonmetric multidimensional scaling has undergone considerable development and expansion in recent years through several distinct lines of methodological activity. One such line is yielding a varlety of different algorithms for
performing multidimensional mappings simultaneously for separate groups so as to generate information about how the groups differ. An early algorithm for this type of analysis, INDSCAL (Carroll and Chang, 1970), has now been complemented by several others that make fewer (or different) assumptions and that are in other ways more powerful and general. These include CANDELINC (Carroll, Puzansky, and Kruskal, 1980), PINDIS (Lingoes and Borg, 1976), MULTISCAL (Ramsay, 1977), ALSCOMP3 (Sands and Young, 1980), and ALSCAL (Takane, Young, and DeLeeuw, 1977). (In the decision tree, these are referred to as three-way nonmetric multidimensional scaling techniques.)

A second line of methodological investigation has focused on the statistical significance of the obtained fits that is, the probability that the correspondence between the multidimensional scaling solution and the observed data could have been obtained purely by a random placement of a specified number of points in a space of given dimensionality; see Isaac and Poor (1974), Langeheine (1980), MacCalIum and Cornelius (1977), Spence and Graef (1974), and Spence and Ogilvie (1973).

A third line of development has pursued "confirmatory" multidimensional scaling-the attempt to fit data to an existing structure; see Borg and Lingoes (1980), and Lingoes and Borg (1976).
3. Developments in techniques for multidimensional contingency table analysis.

Multidimensional contingency table analysis has been used mainly with nominal scales, but recent developments allow its use with interval scales that have a small number of categories. Because such applications are not yet common, use of multidimensional contingency table analysis with interval scales is not included in the decision tree portion of this Guide. For further information, see Fienberg (1977) and Landis et al. (1976).

4. Polynomial regression and nonilinear regression.

As used in this Guide, curvilinear regression refers to polynomial regression, a type of regression that is linear in Its parameters but not in its variables (see Draper and Smith, 1966, page 129). This is different from a type of regression that is nonlinear in its parameters, usually referred to as nonlinear regression (see Draper and Smith, 1966, p. 263).

5. Reduced variance regression techniques.

When one is attempting to predict a dependent variable using two or more predictor variables, the appropriate weights to be applied to those predictor variables can be expected to show substantial variation from one random sample to another if the correlations among the predictor variables are high. Sometimes this is referred to as "instability" of coefficients that results from high multicollinearity among the predictor variables. In recent years there has been considerable discussion in the statistical literature about ways to achieve greater stability in regression coefficients by accepting certain biases. The underlying assumption is that it may be better to use coefficients that tend to be reasonably close to the ideal (population) value but that on average tend to come out slightly different from this value, rather than a coefficient that averages to the correct value over many samples but that in any one sample may be very far off. Although theoretically interesting, we
believe these developments have not yet reached the point where most social science data analysts can routinely apply them and expect to obtain better results than would be produced by more traditional approaches. Useful discussions and reviews of biased estimation techniques (including, particularly, "ridge regression") have been provided by the following authors: Darlington (1978), Dempster, Schatzoff, and Wermuth (1977), Fennessey and d'Amico (1980), Rozeboom (1979), and Smith and Campbell (1980).

6. Exploratory data analysis.

"Exploratory data analysis" is a phrase associated with a collection of techniques proposed by Tukey (1977) that are intended to let the analyst explore a set of data while making minimal assumptions. Although based on well accepted statistical foundations, Tukey's terminology is nontraditional and his techniques are not yet widely used. Summaries of some of his key ideas can be found in Hartwig (1979) and Leinhardt and Wasserman (1978).

7. Survival analysis.

Techniques for survival analysis (i.e., the analysis of time intervals between events) are not included in the tree portion of this Guide because, at least in the past, their application in the social sciences has largely been restricted to specific disciplines, such as demography. It is possible, however, that these techniques could profitably be applied to problems encountered in other contexts, such as studies of residential and occupational mobility, completion of education, and retirement. Techniques to handle cases with incomplete data (censored data), data involving competing risks, covariates, and interactions have been developed. Texts that describe such techniques include Kalbfleisch and Prentice (1980) and Gross and Clark (1975).
8. Information theory and the analysis of contingency tables. A measure of uncertainty, H, derived from information
theory, can be used to measure the degree of association between two or more nominal variables. (The coefficient of association is often called U.) More generally, information theory has been used to develop methods for analyzing multidimensional contingency tables. For details, see Gokhale and Kullback (1978).

9. Sampling errors of statistics from complex designs.

An assumption often required for the use of inferential statistics is that the observations are based on a simple random sample from some population. This assumption is required because the estimates of sampling error assume that each observation is independent of all others. Often, however, stratification or clustering is used instead of a simple random procedure, and this introduces nonindependence among the observations. Two programs are available in the OSIRIS IV software package that can be used to estimate the sampling error of statistics from clustered or stratified samples: \&PSALMS estimates the sampling error of means, and \&REPERR estimates the sampling error of regression statistics.

10. The polychoric correlation coefficlent for two ordinal variables.

It was pointed out in the Instructions and Comments sectlon of this Guide that ordinally scaled variables may be transformed to ranks, and the transformed data then treated as intervally scaled. Another approach has been suggested for the case of two ordinal variables. This approach assumes that the ordinal variables have been generated
from unobserved (latent) interval-scale variables with a bivariate-normal distribution. Then the "true" productmoment correlation is estimated by a measure called the polychoric correlation coefficient (OIsson, 1979, 1980). The polychoric coefficient is a generalization to polychotomies (scales with more than two points) of the tetrachoric coefficient, which is a similar measure used in the case of two dichotomous variables (see the cautionary footnote on page 7).

11. Time series analysis.

Generally, time series analysis uses regression techniques (often something other than ordinary least squares) to analyze or predict change. Economists have been the leaders among social scientists in developing this area, but other social scientists increasingly are finding time series analysis to be relevant to their analytic problems. The Guide does not include time series analysis-partly because the decision-tree approach does not lend itself well to the analysis of data of a special type (which is the case with time series data), and partly because time series analysis has not yet become widely used by social scientists (except economists). However, because several of the major software packages now include time series programs (BMDP, MIDAS, SAS, SPSS), increased use of these analytic techniques in the coming years seems likely. Introductions to time series analysis for social scientists can be found in Glass, Willson, and Gottman (1975), Hannan and Tuma (1979), and McCleary et al. (1980).

GLOSSARY

ADDITIVE. A situation in which the best estimate of a dependent variable is obtained by simply adding together the appropriately computed effects of each of the independent variables. Additivity implies the absence of interactions. See also INTERACTION.
AGREEMENT. Agreement measures the extent to which two sets of scores (e.g., scores obtained from two raters) are identical. Agreement Involves a more stringent matching of two varlables than does covariation, which implicitly allows one to change the mean (by adding a constant) and/or to change the variance (by multiplying by a constant) for elther or both variables before checking the match.
BIAS. The difference between the expected value of a statistic and the population value it is intended to estimate. See EXPECTED VALUE.
BIASED ESTIMATOR. A statistic whose expected value is not equal to the population value. See EXPECTED VALUE.
BIVARIATE NORMALITY. A particular form of distribution of two variables that has the traditional "bell" shape (but not all bell-shaped distributions are normal). If plotted in three-dimensional space, with the vertical axis showing the number of cases, the shape would be that of a three-dimensional bell (if the variances on both variables were equal) or a "fireman's hat" (If the varlances were unequal). When perfect bivariate normality obtains, the distribution of one variable is normal for each and every value of the other variable. See also NORMAL DISTRIBUTION.
BRACKETING. The operation of combining categories or ranges of values of a variable so as to produce a small number of categories. Sometimes referred to as "collapsing" or "grouping."
CAPITALIZATION ON CHANCE. When one is searching for a maximally powerful prediction equation, chance fluctuations in a given sample act to increase the predictive power obtained; since data from another sample from the same population will show different chance fluctuations, the equation derived for one sample is likely to work less well in any other sample.
CAUSAL MODEL. An abstract quantitative representation of real-world dynamics (l.e., of the causal dependencies and other interrelationships among observed or hypothetical variables).

COMPLEX SAMPLE DESIGN. Any sample design that uses something other than simple random selection. Complex sample designs include multi-stage selection, and/or stratification, and/or clustering. For information on the calculation of sampling errors of statistics from complex designs, see note 9 in Appendix C.
COVARIATE. A variable that is used in an analysis to correct, adjust, or modify the scores on a dependent variable before those scores are related to one or more Independent varlables. For example, in an analysls of how demographic factors (age, sex, education, etc.) relate to wage rates, monthly earnings might first be adjusted to take account of (l.e., remove effects attributable to) number of hours worked, which in this example would be the covariate.
COVARIATION. Covariation measures the extent to which cases (e.g., persons) have the same relative positions on two variables. See also AGREEMENT.
DEPENDENT VARIABLE. A variable which the analyst is trying to explain in terms of one or more Independent variables. The distinction between dependent and independent variables is typically made on theoretical grounds - in terms of a particular causal model or to test a particular hypothesis. Synonym: criterlon variable.
DESIGN MATRIX. A specification, expressed in matrix format, of the particular effects and combinations of effects that are to be considered in an analysis.
DICHOTOMOUS VARIABLE. A variable that has only two categories. Gender (malelfemale) is an example. See also TWO-POINT SCALE.
DUMMY VARIABLE. A variable with just two categories that reflects only part of the information actually avallable in a more comprehensive variable. For example, the four-category variable Region (Northeast, Southeast, Central, West) could be the basis for a two-category dummy variable that would distinguish Northeast from all other regions. Dummy variables often come in sets so as to reflect all of the original Information. In our example, the four-category region variable defines four dummy variables: (1) Northeast vs. all other; (2) Southeast vs. all other; (3) Central vs. all other; and (4) West vs. all other. Alternative coding procedures (which are equivalent in terms of explanatory
power but which may produce more easily Interpretable estimates) are effect coding and orthogonal coefficients.
EXPECTED VALUE. A theoretical average value of a statistic over an Infinite number of samples from the same population.
HETEROSCEDASTICITY. The absence of homogenelty of variance. See HOMOGENEITY OF VARIANCE.
HIERARCHICAL ANALYSIS. As used on page 26 of the Guide, a hierarchical analysis is one in which inclusion of a higher order interaction term Implies the Inclusion of all lower order terms. For example, If the Interaction of two Independent variables is included in an ex planatory model, then the main effects for both of those variables are also included in the model.
HOMOGENEITY OF VARIANCE. A situation in which the variance on a dependent variable is the same (homogeneous) across all levels of the independent variables. In analysis of variance applications, several statistics are avaliable for testing the homogeneity assumption (see Klrk, 1968, page 61); in regression applications, a lack of homogeneity can be detected by examination of residuals (see Draper and Smith, 1966, page 86). In elther case, a variance-stabilizing transformation may be helpful (see Kruskal, 1978, page 1052). Synonym: homoscedasticity. Antonym: heteroscedasticity.
HOMOSCEDASTICITY. See HOMOGENEITY OF VARIANCE.
INDEPENDENT VARIABLE. A variable used to explain a dependent variable. Synonyms: predictor variable, explanatory variable. See also DEPENDENT VARIABLE.
INTERACTION. A situation in which the direction and/or magnitude of the relationship between two variables depends on (i.e., differs accordIng to) the value of one or more other variables. When interaction is present, simple additive technlques are inappropriate; hence, interaction is sometimes thought of as the absence of additivity. Synonyms: nonadditivity, conditioning effect, moderating effect, contingency effect. See also PATTERN VARIABLE, PRODUCT VARIABLE.
INTERVAL SCALE. A scale consisting of equal-sized units (dollars, years, etc.). On an Interval scale the distance between any two positions is of known size. Results from analytic techniques appropriate for interval scales will be affected by any non-linear transformation of the scale values. See also SCALE OF MEASUREMENT.
INTERVENING VARIABLE. A variable which is postulated to be a predictor of one or more dependent varlables, and simultaneously predicted by one or more Independent variables. Synonym: mediating variable.
KURTOSIS. Kurtosis indicates the extent to which a distribution is more peaked or flat-topped than a normal distribution.
LINEAR. The form of a relationship among variables such that when any two variables are plotted, a stralght line results. A relationship is Ilnear if the effect on a dependent variable of a change of one unit in an independent variable is the same for all possible such changes.

MATCHED SAMPLES. Two (or more) samples selected In such a way that each case (e.g., person) in one sample is matched-l.e., Identical within specified limits - on one or more preselected characteristics with a corresponding case in the other sample. One example of matched samples is having repeated measures on the same individuals. Another example is linking husbands and wives. Matched samples are different from independent samples, where such case-bycase matching on selected characteristics has not been assured.
MEASURE OF ASSOCIATION. A number (a statistic) whose magnitude indicates the degree of correspondence-l.e., strength of relationship - between two variables. An example is the Pearson product-moment correlation coefficient. Measures of association are different from stailstical tests of assoclation (e.g., Pearson chi-square, F test) whose primary purpose is to assess the probability that the strength of a relationship is different from some preselected value (usually zero). See also STATISTICAL MEASURE, STATISTICAL TEST.
MISSING DATA. Information that is not avaliable for a particular case (e.g., person) for which at least some other information is avallable. This can occur for a variety of reasons, including a person's refusal or Inability to answer a question, nonapplicability of a question, etc. For useful discussions of how to overcome problems caused by missing data in surveys see Hertel (1976) and Kim and Curry (1977).
MULTIVARIATE NORMALITY. The form of a distribution Involving more than two variables in which the distribution of one variable is normal for each and every combination of categories of all other variables. See Harris (1975, page 231) for a discussion of multivariate normality. See also NORMAL DISTRIBUTION.
NOMINAL SCALE. A classification of cases which defines their equivalence and non-equivalence, but Implies no quantitative relationships or ordering among them. Analytic techniques appropriate for nominally scaled variables are not affected by any one-to-one transformation of the numbers assigned to the classes. See also SCALE OF MEASUREMENT.
NONADDITIVE. Not additive. See ADDITIVE, INTERACTION.
NORMAL DISTRIBUTION. A particular form for the distribution of a variable which, when plotted, produces a "bell" shaped curvesymmetrical, rising smoothly from a small number of cases at both extremes to a large number of cases in the middle. Not all symmetrical bell-shaped distributions meet the definition of normality. See Hays (1973, page 296).
NORMALITY. See NORMAL DISTRIBUTION.
ORDINAL SCALE. A classification of cases into a set of ordered classes such that each case is considered equal to, greater than, or less than every other case. Analytic techniques appropriate for ordinally scaled variables are not affected by any monotonic transformation of the numbers assigned to the classes. See also SCALE OF MEASUREMENT.

OUTLYING CASE (OUTLIER). A case (e.g., person) whose score on a variable deviates substantially from the mean (or other measure of central tendency). Such cases can have disproportionately strong effects on statistics.
PATTERN VARIABLE. A nominally scaled varlable whose categories Identify particular combinations (patterns) of scores on two or more other variables. For example, a parly-by-gender pattern variable might be developed by classifying people into the following six categories: (1) Republican males, (2) Independent males, (3) Democratic males, (4) Republican females, (5) Independent females, (6) Democratic females. A pattern varlable can be used to incorporate interaction in multivariate analysis.
PRODUCT VARIABLE. An Intervally scaled variable whose scores are equal to the product obtained when the values of two other variables are multiplied together. A product varlable can be used to Incorporate certain types of interaction in multivariate analysis.
RANKS. The position of a particular case (e.g., person) relative to other cases on a defined scale - as in "1si place," "2nd place," etc. Note that when the actual values of the numbers designating the relative positions (the ranks) are used in analysis they are being treated as an interval scale, not an ordinal scale. See also INTERVAL SCALE, ORDINAL SCALE.
SCALE OF MEASUREMENT. As used in this Guide, scale of measurement refers to the nature of the assumptions one makes about the properties of a variable; in particular, whether that variable meets the definition of nominal, ordinal, or Interval measurement. See also NOMINAL SCALE, ORDINAL SCALE, INTERVAL SCALE.
SKEWNESS. Skewness is a measure of lack of symmetry of a distribution.
STANDARDIZED COEFFICIENT. When an analysis is performed on variables that have been standardized so that they have variances of 1.0, the estimates that result are known as standardized coefficients; for example, a regression run on original varlables produces unstandardized regression coefficients known as b's, while a regression run on standardized variables produces standardized regression coefficlents known as betas. (In practice, both types of coefficients can be estimated from the original varlables.) Blalock (1967), Hargens (1978), and Kim and Mueller (1976) provide useful discussions on the use of standardized coefficients.

STANDARDIZED VARIABLE. A varlable that has been transformed by multiplication of all scores by a constant and/or by the addition of a constant to all scores. Often these constants are selected so that the transformed scores have a mean of zero and a variance (and standard deviation) of 1.0.
STATISTICAL INDEPENDENCE. A complete lack of covariation between varlables; a lack of association between varlables. When used in analysis of variance or covariance, statistical independence between the Independent variables is sometimes referred to as a balanced design.
STATISTICAL MEASURE. A number (a statistic) whose size Indicates the magnitude of some quantity of interest - e.g., the strength of a relationship, the amount of variation, the size of a difference, the level of income, etc. Examples Include means, variances, correlation coefficlents, and many others. Statistical measures are different from statistical tests. See also STATISTICAL TEST.
STATISTICAL TEST. A number (a statistic) that can be used to assess the probability that a statistical measure deviates from some preselected value (often zero) by no more than would be expected due to the operation of chance If the cases (e.g., persons) studied were randomly selected from a larger population. Examples Include Pearson chisquare, F test, t test, and many others. Statistical tests are different from statistical measures. See also STATISTICAL MEASURE.
TRANSFORMATION. A change made to the scores of all cases (e.g., persons) on a variable by the application of the same mathematical operation(s) to each score. (Common operations Include addition of a constant, multiplication by a constant, taking logarithms, ranking, bracketing, etc.)
TWO-POINT SCALE. If each case is classifled into one of two categories (e.g., yes/no, male/female, dead/alive), the variable is a two-point scale. For analytic purposes, two-point scales can be treated as nominal scales, ordinal scales, or interval scales.
WEIGHTED DATA. Weights are applied when one wishes to adjust the impact of cases (e.g., persons) in the analysis, e.g., to take account of the number of population units that each case represents. In sample surveys weights are most likely to be used with data derived from sample designs having different selection rates or with data having markedly different subgroup response rates.

REFERENCES

Andrews, D. F.; Blckel, P. J.; Hampel, F. R.; Huber, P. J.; Rogers, W. H.; and Tukey, J. W. Robust Estimates of Location: Survey and Advances. Princeton: Princeton University Press, 1972.
Andrews, F. M., and Messenger, R. C. Multivarlate Nominal Scale Analysis. Ann Arbor: Institute for Soclal Research, The University of Michigan, 1973.
Andrews, F. M.; Morgan, J. N.; Sonquist, J. A.; and Klem, L. Multiple Classification Analysis. Second edition. Ann Arbor: Institute for Social Research, The University of Michigan, 1973.
Blalock, H. M., Jr. Causal Inferences, closed populations, and measures of association. American Political Science Review 61 (1967): 130-136.
Blalock, H. M., Jr. Can we find a genuine ordinal slope analogue? In Sociological Methodology 1976, edited by D. R. Heise. San Francisco: Jossey-Bass, 1975.
Blalock, H. M., Jr. Social Statistics. Second edition, revised, New York: McGraw-HIII, 1979.
[BMDP] Dixon, W. J., editor. BMDP Statistical Software 1981 Manual. Berkeley, Callfornia: University of California Press, 1981.
Bock, R. D. Multivariate Statistical Methods in Behavioral Research. New York: McGraw-HiII, 1975.
Bock, R. D., and Haggard, E. A. The use of multivariate analysis of variance in behavioral research. In Handbook of Measurement and Assessment in Behavioral Sclences, edited by D. K. Whitla. Reading, Massachusetts: Addison-Wesley, 1968.
Bock, R. D., and Yates, G. MULTIQUAL: Log-LInear Analysis of Nominal or Ordinal Qualitative Data by the Method of Maximum Likellhood. User's Gulde. Chicago: National Educational Resources, 1973.
Borg, I., and Lingoes, J. C. A model and algorithm for multidimensional scaling with external constraints on the distances. Psychometrika 45 (1980): 25-38.

Bowker, A. H., A test for symmetry in contingency tables. Journal of the American Statistical Assoclation 43 (1948): 572-574.
Bradley, D. R.; Bradley, T. D.; McGrath, S. G.; and Cutcomb, S. D. Type I error rate of the chi-square test of independence in R x C tables that have small expected frequencies. Psychological Bulletin 86 (1979):

1290-1297.
Bradley, J. V. Distribution-Free Statistical Tests. Englewood CIIffs, New Jersey: Prentice-Hall, 1968.
Brown, M. B., and Forsythe, A. B. The small sample behavior of some statistics which test the equality of several means. Technometrics 16 (1974a): 129-132.
Brown, M. B., and Forsythe, A. B. Robust tests for the equality of variances. Journal of the American Statistical Assoclation 69 (1974b): 364-367.
Camilil, G., and Hopkins, K. D. Applicablilty of chl-square to 2×2 contingency tables with small expected cell frequencies. Psychological Bulletin 85 (1978): 163-167.
Carroll, J. D., and Chang, J. J. Analysis of Individual differences in multidimensional scaling via an N -way generalization of "Eckart-Young" decomposition. Psychometrika 35 (1970): 283-319.
Carroll, J. D.; Pruzansky, S.; and Kruskal, J. B. CANDELINC: a general approach to multldimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika 45 (1980): 3-24.
Cohen, J. A coefficlent of agreement for nominal scales. Educational and Psychological Measurement 20 (1960): 37-46.
Cohen, J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin 70 (1968): 213-220.
Conover, W. J. Practical Nonparametric Statistics. New York: John Wiley, 1971.
Cooley, W. W., and Lohnes, P. R. Multivariate Data Analysis. New York: Wiley, 1971.
D'Agostino, R. B. Simple compact portable test of normality: Geary's test revisited. Psychological Bulletin 74 (1970): 138-140.
Darlington, R. B. Reduced varlance regression. Psychological Bulletin 85 (1978): 1238-1255.

Dempster, P.; Schatzoff, M.; and Wermuth, N. A simulation study of alternatives to ordinary least squares. Journal of the American Statistical Assoclation 72 (1977): 77-102.

Dixon, W. J., and Massey, F. J., Jr. Introduction to Statistical Analysis. Third edition. New York: McGraw-Hili, 1969.
Draper, N. R., and Smith, H. Applied Regression Analysis. New York: Wliey, 1966.
DuMouchel, W. H. The regression of a dichotomous variable. UnpubIished. Survey Research Center Computer Support Group, Institute for Soclal Research, University of Michigan, 1974.
DuMouchel, W. H. On the analogy between linear and log-linear regresslon. Technical Report No. 67. Unpublished. Department of Statistics, University of Michigan, March 1976.
Feinberg, S. E. The Analysis of Cross-Classified Data. Cambridge, Massachusetts: The MIT Press, 1977.
Fennessey, J., and d'Amico, R. Collinearity, ridge regression, and Investigator Judgement. Sociological Methods and Research 8 (1980): 309-340.
Fleiss, J. L.; Cohen, J.; and Everitt, B. S. Large sample standard errors of kappa and weighted kappa. Psychological Bullelin 72 (1969): 323-327.
Freeman, L. C. Elementary Applied Statistics for Students In Behavioral Sclence. New York: Wiley, 1965.
Gillo, M. W. MAID: A Honeywell 600 program for an automatised survey analysis. Behavioral Science 17 (1972): 251-252.
Gillo, M. W., and Shelley, M. W. Predictive modelling of multivariable and multivariate data. Journal of the American Statistical Assoclation 69 (1974): 646-653.

Glass, G. V., and Hakstian, A. R. Measures of assoclation In comparatlve experiments: their development and Interpretation. American Educstional Research Journal 6 (1969): 403-414.
Glass, G. V.; Willson, V. L.; and Gottman, J. M. Design and Analysis of Time Series Experiments. Boulder, Colorado: Colorado Assoclated University Press, 1975.
Gokhale, D. V., and Kullback, S. The Information in Contingency Tables. New York: Marcel Dekker, 1978.
Goodman, L. A., and Kruskal, W. H. Measures of association for cross classifications. Journal of the American Statistical Assoclation 49 (1954): 732-764.

Goodman, L. A., and Kruskal, W. H. Measures of association for cross classifications III: approximate sampling theory. Journal of the Amerlcan Statlstical Assoclation 58 (1963): 310-364.
Goodman, L. A., and Kruskal, W. H. Measures of association for cross classification IV: simplification of asymptotic variances. Journal of the American Statistical Association 67 (1972): 415-421.
Gorsuch, R. L. Factor Analys/s. Philadelphla: W. B. Saunders, 1974.
Gross, A. J., and Clark, V. A. Survival Distributions: Reliability Applicatlons in the Blomedical Sciences. New York: Wiley, 1975.
Guttman, L. A general nonmetric technique for finding the smallest coordinate space for a conflguration of points. Psychometrika 33 (1968): 469-506.

Hannan, M. T., and Tuma, N. B. Methods for temporal analysis. In Annual Review of Soclology: 1979, edited by A. Inkeles. Palo Alto: Annua Reviews, 1979.
Hargens, L. A note on standardized coefficients as structural parameters. Soclological Methods and Research 5 (1976): 247-256.
Harris, R. J. A Primer of Multivariate Statistics. New York: Academic Press, 1975.
Harshbarger, T. R. Introductory Statistics: A Decision Map. New York: Macmilian, 1971.
Harshman, R. A. PARAFAC: Foundations of the PARAFAC procedure models and conditions for an 'explanatory' multi-model factor analy. sis. Working papers in phonetics 16. Los Angeles: University of California at Los Angeles, 1970.
Hartwig, F. Exploratory Data Analysis. Beverly Hills, Callfornia: Sage, 1979.

Hays, W. L. Statistics for the Social Sclences. Second edition. New York: Holt, Rinehart, and Winston, 1973.
Hertel, B. R. Minimizing error variance Introduced by missing data routines In survey analysis. Sociological Methods and Research 4 (1976): 459-474.

Isaac, P. D., and Poor, D. D. S. On the determination of appropriate dimensionality in data with error. Psychometrike 39 (1974): 91-109.
Jöreskog, K. G., and Sörbom, D. LISREL: Analysis of LInear Structura Relationships by the Method of Maximum Likelihood. Version IV. User's Guide, Chicago: National Educational Resources, 1978
Kalbfleisch, J. D., and Prentice, R. L. The Statistical Analysis of Fallure Time Data. New York: Wliey, 1980.
Kelley, T. L. An unblased correlation ratio measure. Proceedings of the National Academy of Sciences 21 (1935): 554-559.
Kendali, M. G. Rank Correlation Methods. Fourth edition. London: Griffin, 1970.

Kendall, M. G., and Stuart, A. The Advanced Theory of Statistics, Volume 2. New York: Hafner, 1961.

Kerlinger, F. N., and Pedhazur, E. J. Muttiple Regression in Behavioral Research. New York: Holt, Rinehart and WInston, 1973.
KIm, J. Predíctive measures of ordinal association. American Journal of Sociology 76 (1971): 891-907.
KIm, J. Multivariate analysis of ordinal variables. American Journal of Sociology 81 (1975): 281-298.
KIm, J., and Curry, J. The treatment of missing data in multivarlate analysis. Soclological Methods and Research 6 (1977): 215-240.
KIm, J., and Mueller, C. W. Standardized and unstandardized coefficients in causal analysis. Sociological Methods and Research 4 (1976): 423-438.
KIrk, R. E. Experimental Design: Procedures for the Behavioral Sciences. Belmont, Calliornia: Brooks/Cole, 1968.
Krippendorff, K. Bivariate agreement coefficients for reliability of data.

In Sociological Methodology: 1970, edited by E. F. Borgatta and G. W. Bohrnstedt. San Franclsco: Jossey-Bass, 1970.
Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29 (1964a): 1-27.
Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29 (1964b): 115-130.
Kruskal, J. B. Transformations of data. In International Encyclopedia of Statistics, Volume 2, edited by W. H. Kruskal and J. M. Tanur. New York: Crowell Collier and Macmillan. Originally published 1968. Copyright renewed in 1978 by The Free Press.
Kruskal, J. B., and Wish, M. Multidimensional Scaling. Beverly HIlis, California: Sage, 1978.
Kruskal, J. B.; Young, F. W.; and Seery, J. B. How to use KYST, a very flexible program to do multidimensional scaling and unfolding. Unpublished. Bell Laboratories, Murray Hills, New Jersey, 1973.
Landis, J. R.; Stanish, W. M.; Freeman, J. L.; and Koch, G. G. A computer program for the generallzed chi-square analysis of categorial data using weighted least squares (GENCAT). Computer Programs in Biomedicine 6 (1976): 196-231.
Langeheine, R. Erwartete fitwerte for Zufaliskonfigurationen in PINDIS. Zeitschrift for Sozlalpsychologie 11 (1980): 38-49.
Leinhardt, S., and Wasserman, S. S. Exploratory data analysis: an Introduction to selected methods. In Sociological Methodology 1979, edited by K. F. Schuessler. San Francisco: Jossey-Bass, 1978.
Light, R. J. Measures of response agreement for qualitative data: some generalizations and alternatives. Psychological Bulletin 76 (1971): 365-377.
Lingoes, J. C., and Borg, I. Procrustean Individual difference scaling. Journal of Marketing Research 13 (1976): 406-407.
Lingoes, J. C.; Roskam, E. E.; and Borg, I. Geometric Representations of Relational Data. Second edition. Ann Arbor: Mathesis Press, 1979.
MacCallum, R. C., and Cornellus, E. T. A Monte Carlo Investigation of recovery of structure by ALSCAL. Psychometrika 42 (1977): 401-428.
Mayer, L. S., and Robinson, J. A. Measures of association for multiple regression models with ordinal predictor variables. In Sociological Methodology 1978, edited by K. F. Schuessler, San Franclsco: JosseyBass, 1977.
McCleary, R., and Hay, R. A., Jr., with Meldinger, E. E., and McDowall, D. Applied Time Series Analysis for the Soclal Sclences. Beverly Hilis, Callfornla: Sage, 1980.
McNemar, Q. Psychological Statistics. Fourth edition. New York: Wiley, 1969.
[MIDAS] Fox, D. J., and Guire, K. E. Documentation for MIDAS. Third edition. Ann Arbor: Statistical Research Laboratory, The University of Michigan, 1976.
Morrison, D. F. Multivariate Statistical Methods. Second edition. New York: McGraw-HIII, 1978.

Mosteller, F., and Tukey, J. W. Data Analysis and Regression. Reading, Massachusetts: Addison-Wesley, 1977.
Neter, J., and Wasserman, W. Applled Linear Statistical Models. Homewood, Illinols: Richard D. Irwin, 1974.
Nunnally, J. C. Psychometric Theory. Second edition. New York: McGraw-Hill, 1978.
Olson, C. L. On choosing a test statistic in multivariate analysis of varlance. Psychological Bulletin 83 (1976): 579-586.
OIsson, U. Maximum Ilkellhood estimation of the polychoric correlation coefficient. Psychometrika 44 (1979): 443-460.
Olsson, U. Measuring correlation in ordered two-way contingency tables. Journal of Marketing Research 17 (1980): 391-394.
[OSIRIS] Survey Research Center Computer Support Group. OSIRIS IV User's Manual. Seventh edition. Ann Arbor: Institute for Social Research, The University of Michigan, 1981.
Overall, J. E., and Klett, C. J. Applied Multivariate Analysis. New York: McGraw-HIII, 1972.
Ramsay, J. O. Maximum likelihood estimation in multidimensional scalling. Psychometrika 42 (1977): 241-286.
Rao, C. R. Linear Statistical Inference and its Applications. New York: Wiley, 1965.
Robinson, W. S. The statistical measurement of agreement. American Soclological Review 22 (1957): 17-25.
Rozeboom, W. W. Ridge regression: bonanza or begullement? Psychological Bulletin 86 (1979): 242-249.
Sands, R., and Young, F. W. Component models for three-way data: an alternating least squares algorithm with optimal scaling features. Psychometrika 45 (1980): 39-68.
[SAS] SAS Institute, Inc. SAS User's Guide, 1979 Edifion. Raleigh, North Carolina: SAS Institute, 1979.
[SAS] SAS Institute, Inc. The SAS Supplemental Library User's Guide, 1980 Edition. Cary, North Carolina: SAS Institute, 1980.
Siegel, S. Nonparametric Methods for the Behavioral Sclences. New York: McGraw-Hill, 1956
Smith, G., and Campbell, F. A critique of ridge regression methods. Journal of the American Statistical Association 75 (1980): 74-81.
Sneath, P. H. A., and Sokal, R. R. Numerical Taxonomy. San Francisco: W. H. Freeman, 1973.

Snedecor, G. W., and Cochran, W. G. Statistical Methods. Sixth edition. Ames, lowa: The lowa State University Press, 1967.
Somers, R. H. A new asymmetric measure of association for ordinal variables. American Soclological Review 27 (1962): 799-811.
Sonquist, J. A.; Baker, E. L.; and Morgan, J. N. Searching for Structure. Revised edition. Ann Arbor: Institute for Social Research, The University of Michigan, 1974.
Sörbom, D., and Jöreskog, K. G. COFAMM: Confirmatory Factor Analysis with Model Modification. User's Guide. Chicago: Natlonal Educational Resources, 1976.

Spence, I., and Graef, J. The determination of the underlying dimenslonality of an empirically obtained matrix of proximities. Multivariate Behavioral Research 9 (1974): 331-342.
Spence, I., and Ogilvie, J. C. A table of expected stress values for random rankings in nonmetric multidimenslonal scaling. Multivariate Behavioral Research 8 (1973): 511-517.
[SPSS] Nie, N. H.; Hull, C. H.; Jenkins, J. G.; Steinbrenner, K.; and Bent D. H. SPSS: Statistical Package for the Social Sciences. Second edition. New York: McGraw-HIII, 1975.
[SPSS] Hull, C. H., and Nie, N. H. SPSS UPDATE 7-9: New Procedures and Facilities for Releases 7-9. New York: McGraw-Hill, 1981.
Srikantan, K. S. Canonical assoclation between nominal measurements. Journal of the American Statistical Association 65 (1970): 284-292.
Statistical Research Laboratory, Elementary Statistics Using MIDAS. Second edition. Ann Arbor: Statistical Research Laboratory, The

University of Michigan, 1976.
Statistics Department, University of Chigaco. ECTA program: descriptlon for users. Mimeographed paper, 1973.
Stuart, A. The estimation and comparison of strengths of association in continency tables. Blometrika 40 (1953): 105-110.
Takane, Y.; Young, F. W.; and DeLeeuw, J. Nonmetric Individual differences multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika 42 (1977): 7-67.
Tukey, J. W. Exploratory Data Analysls. Reading, Massachusetts: Addison-Wesley, 1977.
Young, F. W., and Torgerson, W. S. TORSCA, a FORTRAN IV program for Shepard-Kruskal multidimensional scaling analysis. Behavioral Sclence 12 (1976): 498.
Yule, G. V., and Kendall, M. G. An Introduction to the Theory of Statistics. Fourteenth edition. London: Griffin, 1957.

[^0]: ** Requires a sequence of MIDAS commands. See Statistical Research Laboratory, 1976, page 274.
 † All capabilities in SPSS REGRESSION are also avallable in NEW REGRESSION.
 \ddagger Requires that the data analyzed be the differences between the paired observations.

[^1]: * IN SPSS, this test is called Wald-Wolfowitz.

[^2]: "The square of the part correlation is printed; it is labelled Marginal RSQD.
 \dagger All capabilities in SPSS REGRESSION are also available in NEW REGRESSION.

