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PREFACE TO THE SECOND EDITION

This Guide Is intended to help soclal scientists select
from the vast array of statistical techniques a particular
statistic or technigue that can be appropriately applied in a
given analysis. The Guide Is addressed to practicing social
scientists, data analysts, and graduate students who
already have some knowledge of social science statistics
and who want a systematic but highly condensed overview
of many of the statistical techniques in current use and of
the purposes for which each is intended.

The popularity of the first edition of the Guide leads us to
hope that this substantially expanded and updated second
edition will also prove useful. The original version of this
Guide became available in 1971, was revised and formally
published by the Institute for Social Research in 1974, and
has subsequently been through four English-language print-
ings. In addition, ISR has granted permission for editions in
French (Laval University, Quebec) and Hebrew (University of
Haifa). This second edition contains nearly all of the material
that appeared In the first edition plus significant
expansions: the number of statistical techniques included
in the decision tree has been increased by almost 50
percent, with major additions being made to the coverage of
multivariate analysis; a glossary that defines technical
terms has been added; and Appendix B, which indicates
where each statistic can be found in the output from com-
puter software, now Includes detailed information on
sources in the OSIRIS, MIDAS, SPSS, SAS, and BMDP soft-
ware systems. There has been a general updating through-
out the Guide to incorporate many of the statistical and an-
alytical developments of the past decade.

No guide could include all the statistics ever proposed as
useful for soclal science data analysis and this Guide
makes no claim to do so. Rather, it attempts to include —

vi

and functionally distinguish—those statistics and statis-
tical techniques that are in common use in the social
sciences, that receive significant attention in social science

statistics texts, or that seem to have high potential useful-
ness. About 150 statistics or statistical techniques are in-
cluded In this Guide.

The core of the Gulde is the 28 pages of sequential
questions-and-answers that lead the user to an appropriate
technique. This is the “decision tree.” Preceding the “tree”
section Is a short set of instructions about how to use the
tree and some comments suggesting alternative strategies
and certain cautions that should be kept in mind. Three ap-
pendices and a glossary follow the tree. Appendix A cites
specific pages in a major reference where each statistic
presented in the Guide Is discussed and its means of com-
putation Is given. Appendix B identifies the programs in five
major software systems and several special-purpose pro-
grams that compute given statistics. Appendix C covers
some additional statistical techniques that were judged to
be too new or too rarely used to merit inclusion In the
decision-tree portion of the Guide but that seemed poten-
tially useful for soclal science data analysis. The Guide con-
cludes with a bibliography presenting the full reference for
each cited book and article.

For assistance in the preparation of this Guide we are
grateful to Christine Zupanovich and her colleagues in the
ISR Word Processing Group, to Linda Stafford and her col-
leagues in the ISR Publishing Division, and to Eugene Lep-
panen and his colleagues in the University of Michigan
Technical lllustration Unit. Preparation of the Guide has
been partially supported by the Computer Support Group of
ISR's Survey Research Center.
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INSTRUCTIONS AND COMMENTS ON THE USE OF THIS GUIDE

This Guide Is Intended to help a data analyst select
statistics or statistical techniques appropriate for the pur-
poses and conditions of a particular analysis.

To use this Guide, start with the question on page 3,
choose one of the answers presented there, and then con-
tinue along the “branches” of the decision tree as In-
structed. Eventually you will arrive at a box that names a sta-
tistical technique and/or a statistical measure andl/or a
statistical test appropriate to your situation—Iif one was
known to the authors. Many of the technical terms used in
the Guide are defined In the Glossary that begins on page
63.

The typlcal box contains one statistical measure (in the
portion outlined by solid lines) and one statistical test (in the
dotted portion). In a few cases, several different measures,
or several different tests, are presented in the same box.
These are essentially equivalent from a functional point of
view, and comments to help you choose among them may
appear in an accompanying footnote. Sometimes a measure
appears without an accompanying test if none seemed par-
ticularly appropriate, and sometimes a test Is listed without
any measure.

Some branches of the tree terminate in boxes that are
empty. These indicate situations for which the authors knew
of no appropriate technique — Indeed, further statistical de-
velopment may be needed. If an analysis is to be performed
in such a case, it will be necessary to find an alternative

sequence through the decision tree or to consult another
source of information.

In many analysis situations It Is possible to make alterna-
tive decisions about the nature of the variables, relation-
ships, and/or goals, and these may result in the selection of
alternative final boxes. It is always possible to use tech-
niques that require less stringent assumptions than the
ones originally considered. For example, measures or tests
may be used that are appropriate for a weaker scale of
measurement, or techniques appropriate for non-additive
situations may be used even though the variables actually
form an additive system. Note also that non-additive
systems can sometimes be handled using an additive tech-
nique if an appropriate combination of varlables (e.g.,
pattern variable, product variable) has been formed. Recall
also that two-point nominal varlables and ranks meet the
definition of intervally scaled variables.

Cautionary Comments

1. Welghted data, missing data, small sample sizes, com-
plex sample designs, and capitalization on chance in fitting
a statistical model are sources of potential problems in data
analysis. The Guide does not deal with these complications.
If one of these situations exists, the Guide should be used
with caution. (See note 9 in Appendix C for a brief discussion



of sampling errors from complex samples.)

2. The statistical measures in the terminal boxes are de-
scriptive of the particular sample being examined. For some
statistical measures, the value obtained will also be a good
estimate of the value in the population as a whole, whereas
other statistics may underestimate (or overestimate) the
population value. In general, the amount of bias is relatively
small and sometimes adjustments can be made for it. These
adjustments are discussed In some statistics texts (but not
in this Guide). If a statistic is a biased estimator of the popu-
lation value, it is marked in this Guide with an asterisk.

3. In principle, a confidence interval may be placed
around any statistic. It Is also possible to test the signifi-
cance of the difference between values of a statistic cal-
culated for two non-overlapping groups. These procedures
are not indicated in the Guide but are discussed In standard
textbooks.

4. The Guide does not explicitly consider possible trans-
formations of the data such as bracketing, using logarithms,
ranking, etc. Transformations may be used to simplify
analysis or to bring data Into line with assumptions. (For

example, it Is often possible to transform scores so that the
transformed scores correspond to a normal distribution,
constitute an interval scale, or relate linearly to another
variable.) Occasionally, it may be wise to eliminate cases
with extreme values. For guidance on selecting appropriate
transformations, see Kruskal (1978).

5. Common assumptions for inferences based on tech-
niques using one or more Intervally scaled variables (par-
ticularly when the Intervally scaled variable is a dependent
variable) include the following: first, that the observations
are Independent, i.e., the selection of one case for inclusion
In the sample does not affect the chances of any other case
being included, and the value of a variable for one case in no
way affects the value of the variable for any other case;
second, that the observations are drawn from a population
normally distributed on the Intervally scaled variable(s); and
third, if more than one variable is Involved, that the intervally
scaled variable(s) have equal variances within categories
of the other variable(s), l.e., there is homogeneity of
variance. Bivarlate or multivariate normality is also some-
times assumed.
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THE DECISION TREE:
QUESTIONS AND ANSWERS LEADING TO APPROPRIATE STATISTICS OR STATISTICAL TECHNIQUES

STARTING POINT

How many variables does the problem Involve?

Y o O
g N

One Varlable Two Varlables More Than Two
Variables

How do you want to treat the varlables with respect to scale of measurement?

AL
g |
Both Both Both One Interval, One Interval, One Ordinal,
interval Ordinal Nominal One Ordinal One Nominal One Nominal

go to go to go to go to go to go fo go to go to
page 4 page 6 page 8 page 9 page 11 page 12 page 15 page 16




ONE VARIABLE

How do you want to treat the variable with respect to scale of measurement?

\

A
P
Nominal Ordinal Interval
' What do you want to know about the distri- What do you want to know about the distri- go fo
bution of the variable? bution of the variable? page 5
A A \
(E:entral Dispersion Frequencies <) (Contral Dispersion Frequencies
Tendency Tendency
Mode Relative Relative Median Inter-quartile Relative
frequency of frequencies, e.g., deviation ":%‘:3:‘9:; 6.9
modal value percentages P g
or class Absolute
Absolute frequencies
frequencies
N-tiles




(continued from page 4)

s One Interval variable

What do you want to know about the distribution of the variable?

A
/
Central Dispersion Symmetry Peakedness Frequencies Normality
Tendency
Standaid de- Skewness* Kurtosls*
viation 'fl'o test departur:ls Relative Kolmogorov-
Coefficient of To test departures rom normality: for frequencies, e.g., Smirnov one
. from normality: for N greater than 1000,
variation N greater ‘ha: 150, refer the critical percariiages KAl tost
Range* refer the critical ratio of the kurtosls Absolute Lilllefors
Do you want to ratlo of the skew- measure (o a table frequencles extenslon of
treat outlying ness measure to a of the unit normal the Kolmogorov-
cases differently table of the unit curve; for N between N-tiles Smirnov test
fron others? normal curve; for 200 and 1000, refer
; N between 25 and the kurtosis measure Chi-square
A 150, refer the to a table for testing goodness-of-
4 skewness measure kurtosls; for N less fit test (x?)
Yes No to a table for than 200, use Geary's

Winsorized mean
Trimmed mean

Hampel estimate
of locatlon

Blweight mean

* Blased estimator

testing skewness.

criterion.

What Is the form

of the
distribution?
Gymmolrlc Sltumd\
Mt;an Median
Mean

See also specific
tests for skewness
and kurtosls




TWO INTERVAL VARIABLES

Is a distinction made between a dependent and an independent variable?

A
F Yes No \
Do you want to treat the relationship as linear? Do you want to test whether the means on
A the two variables are equal?
& Yes No A A
(" VYes No i |
l Do you want to treat the relationship as linear?
Regression Coelficients from h 1 A
coefficient curvilinear | !test for 1 -~ Yeos No E |
(b or beta, g) regression | paired | I l
' | (b or beta, g)4¢ | observationst** |
| Ftest! | 1 b e e . What do you want to measure?
1 (Fequalst?) | Ftest! H
s ot S v ek i) i (F equals t? for | A
| each coefficlent) | r Agreement Covarlation)

Should there be a penalty if the

variables do not have the same pg;o to?
e
* Biased estimator. distributions? 9
t The assumptions In note 5 on page 2 may apply. ("  VYes No
i Beta is a standardized version of b. See "standardized coefficient”
In Glossary.
R n's A '
! The type of curvilinear regression referred to here Is also known KN 5;&?&?::"’;5
as polynomial regression. See note 4 in Appendix C for further Intraclass cor- agreement (1)
discussion. relation coeffi-
clent (r)*
**The t test for paired observations is appropriate for paraliel meas-
ures from matched cases as well as for repeated measures on a F tost! \

single set of cases. See “matched samples” In Glossary. | P el 1



(continued from page 6)
* Two Interval variables * No distinction Is made between a
dependent and an independent variable  The relationship Is to
be treated as linear = Covariation is to be measured
How many of the variables are dichotomous?
A
r None One Both A\
Is the dichotomous variable a collapsing of a con- Are the variables collapsings of continuous vari-
tinuous variable and do you want to estimate what ables and do you want to estimate what the cor-
the correlation would be If it were continuous? relation would be if they were continuous?
A X
'3 Yes No R ‘ Yes No N\
Pearson's product 1 Pearson'’s product t Pearson’s product
moment r* el ¢ moment r (equals Tatrachadc’ momon': r (%qu:lg
I | point biserlal r)*:# | phi)*
Dotz l | | o
I | ratlo for biserla Refer critical ratio for tetra- |
: :'e?:r“cmg:t::l?:d l { r 10 a table of the | | r.“:" o:' pgrnt | : choric rto a | | Refer critical :
| ofZtoatableof ! unit normal I | biserial r to a I | 1athe of the I | ratio forphito |
| the unit normal | | curve. ! | table of the l | ot nokmal [ | atableofthe |
I curve. I it ot i J | unit normal ' | e ! J unit normal :
ot s i s e d 1 curve. | | curve.
T, e e e Jd IR et e e =1
* Biased estimator.
t Both the tetrachoric r and the biserial r depend on a strict assump- ¥ Pearson's r In this case Is mathematically equivalent to a point
tion of the normality of the continuous varlables that have been biserial r; the tests are almost equivalent.
dichotomized. Furthermore, the sampling error for both coefficlents
is large when dichotomies are extreme. Nunnally (1978, pages ¥ Pearson's r in this case Is mathematically equivalent to phi (see
135-137) advises against the use of these coefficients. page 9); the tests are almost equivalent.




TWO ORDINAL VARIABLES

Is a distinction made between a dependent and an Independent variable?

A
f_ Yes Nlo B
What do you want to measure?
Somers' d A
({ Agreement Covarlation 3
! ForN greater than 10, refer the critical ratio !
! of S to a table of the unit normal curve; for
| N less than or equal to 10, refer d to a table :
Bl I Y e 3 f Do you want to treat the ranks of
the ordered categories as interval scales?
=
4 Yes No <3

Spearman's rho (r,)*

Kendall's tau a, tau b, or tauc
{7l| fba 'cp

r—----

* Biased estimator.

t The data may be transformed to ranks and r; or Krippendorff's f
used. See page 6.

! These statlstics ditfer with respect to how they treat palrs of cases
that fall In the same category on one or both of the variables.
Except In extreme cases (l.e., where any of the statistics equals 0
or 1) the absolute value of gamma wiil be the highest of the five

When N is 10 or larger, refer the critical value of | .
r, to a table of the t distribution; for N less than | Goodman and Kruskal's gamma
10, refer r, to a table of critical values of r,. '

—— — — — ————————— ———

(v)?
Kim's d+

! For N greater than 10 refer the critical ratio

; of S to a table of the unit normal curve; for

i N less than or equal to 10, refer these slatistics
L to a table of critical values of S.

—— —— —

statistics, tau a will be the smallest, and tau b, tau ¢, and Kim's d
will be intermediate. This ordering is because gamma Ignores all
tles (when present in the data—as is usually the case), whereas the
other four statistics penalize for tles In the sense of reducing the
absolute value of the statistic obtained. Unlike tau b and Kim's d,
tau ¢ can attain +1 even If the two varlables do not have the same
number of categories. If there are no ties on either variable the five
measures are identical. See Goodman and Kruskal (1954), Kendall
(1970), Kendall and Stuart (1961), Stuart (1953), and Kim (1971).
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TWO NOMINAL VARIABLES

Are the variables both two-point scales?
P

i Yes No =
What do you W?Lfo measure? Is a distinction made between a dependent and an independent variable?
AL

("  Symmetry Covariation \ r Yes No )
Yule's Qf Do you want a statistic based on the number of cases In go to
Phi (¢)® each category or on the number of cases In the modal cate- page 10

| McNemar's test | gories? A

Fisher's exact test

i of symmetryt** |
L

Statistic Based on Number Statistic Based on Number
of Cases In Each Category of Cases in Modal Categories

|

Refer critical ratlo
of phi to a table
of the unit normal

curve.
Goodman and Kruskal's
Asymmetric lambda (A, A
Pearson tau b (ry) y (Ashsg)
hi- 20
l_c_.' E-ugr_e E)_... - : Refer critical ratio of tau b : : Refer critical ratio of lambda I
: to a table of the unit normal | = to a table of the unit normal :
curve, ! curve.
o e STl B T o e e i s e SR 2]
t In this case, McNemar's test of symmetry Is equivalent to
hran's Q.
o ' Pearson chi-squares can be corrected for continuity (Yate's
' In this case, Yule's Q is equivalent to Goodman and Kruskal's correction) but this Is controversial. See Camilli and Hopkins (1978).
gamma and phi is equivalent to Pearson’s product moment r. In
general, Q will be higher In absolute value than phi because Q ** McNemar's test of symmetry is appropriate for paraliel measures
ignores pairs of cases which fall in ihe same category on one or from matched cases as well as for repeated measures on a single
both of the variables. set of cases. See “matched samples" In Glossary.

e T —




R

(continued from page 9)
= Two nominal variables = At least one of the variables Is not a

two-point scale * No distinction is made between a dependent
and an Independent variable

What do you want to measure?

A
f Agreement Symmetry Covarlation k.
Do you want a statistic based on
the number of cases in each cate-
| : gory or on the number of cases in
Should there be a penalty If the I :‘,"x?nm"?:;;??' " the modal categorles?
variables do not have the same dis- S idpesd ek £ o - A
tributions? ( Statistic Based on Number Statistic Based on Number )
A of Cases In Each Category of Cases In Modal Categories
7 Yes No A\
Do you want a statistic whose up- Symmetric lambda
Scott's coeffl GCohen's agree- per limit varies with the number of (\ag)
clent of agree- ment eoelj!clents. f:;:%f’;ss : :’: a:’;?:?? upper limit \ Beter critical ratio
| ment, pl (x) kappas (x's) K ’ % of symmetric lambda |
| | i N | to a table of the
| Refer critical ratios | Yes o N | unit normal curve. |
| forCohen's x'stoa | Mo X O R =3
y table of the unit nor- I
;_ mal curve. ] |
Pl ;e e ey St S e Contingency
coefficient (C) Cramér's V
: Pearson : | Pearson :
1 chi-square (x*)" i chi-square (x?)' |
e — J ______ -
' Pearson chi-squares can be corrected for continuity but this Is ** McNemar's test of symmetry Is appropriate for parallel measures
controversial. See Bradley et al. (1979). from matched cases as well as for repeated measures on a single

set of cases. See “matched samples” In Glossary.

10
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TWO VARIABLES: ONE INTERVAL, ONE ORDINAL

Is the ordinal variable a two-point variable?

7 Yes s No N

Do you want to treat the ordinal variable as if it were based on an

goto underlying normally distributed Interval variable?
page 6 A
- Yes No g
=1 s ostliolent of Do you want to treat the ordinal variable as if it were a monotonic
seronth-hrc et transformation of an underlying interval variable?
A,
| DoFishersrtoZtrans- | i Yes No N

formation and refer critical |
: ratlo of Z to a table of |
Lthe unit normal curve,

Mayer and
Robinson’s M,,*

: Do Fisher's r to Z trans- !

H formation and refer critical I
|

ratio of Z to a table of I
Llha unit normal curve. )

* Blased estimator.

t Jaspen's coefficlent Is the product moment correlation between the
Interval variable and a transformation of the ordinal variable. The
magnitude of this statistic Is sensitive to the assumption of
normality.

* Any two-point varlable meets the criterla for an intervally scaled
variable.




TWO VARIABLES: ONE INTERVAL, ONE NOMINAL

Is the interval variable dependent?
e S

4

Yes

|
Do you want a measure of the strength of relationship between
the variables or a test of the statistical significance of differences

between groups?

-
/ Measure of Testof )
Strength Significance
Do you want to describe the rela- Is the nominal variable a two-point variable?
tionship In your data or to estimate A
it In the population which you have go to { Yes \
sampled? page 13 NP
P -
/" Describe Estimate )
to
Eta? (»?) Omega? (w*)** p%%e 6"
: F testh! : Intraclass correlation
[ S 4 coefficlent (r)*!
Kelley's epsilon? (¢2)*:!

|
| F testtt )

Blased estimator.
The assumptions in note 5 on page 2 may apply.

If the nominal varlable Is a two-point scale, the t test Is an alter-
natlve (because In such case F equals t2).

Omega? applles to the fixed etfects model, and the Intraclass
correlation coefficlent applies to the random effects model. Thus
omega? should be used If you want to make Inferences only about
the specific categories of the nominal variable which appear in the
data, whereas the Intraclass correlation coefficient should be used
if you view the particular categories that appear in the data as a
random sample from a larger set of potentlal categories and you

want to make Inferences about the total set ol potential categorles.
(See Hays, 1973, page 525; Hays denotes the intraclass correlation
as p, rather than r;)) In most situations it is more appropriate to use
the fixed effects model, l.e., omega?. Kelley's epsilon? Is used for
exactly the same purpose as Hays' omega? but differs very slightly
In computation. Hays' omega? was apparently developed
Independently of Kelley's earller statistic. Kelley's epsilon? is
precisely equivalent to eta?, after eta? Is adjusted for degrees of
freedom. See Glass and Hakstlan (1968), Kelley (1935), and Hays
(1973; page 485).

Any two-point variable meets the criterla for an intervally scaled
variable.

12
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(continued from page 12) *» There are two varlables, one Interval and the other
nominal * The Interval varlable Is dependent ¢ Statistical
significance of differences between groups is to be tested

Are you willing to assume that the intervally scaled variable is normally dis-
tributed in the population?

AL
- Yes No )
Do you want to test the equality
of means or of varlances of the Do you want to test the equality of
dependent variable for dilferent variances of the dependent vari-
categories of the independent vari- able for different categories of the
able? independent variable?
A A
r Means Varlances )\ ( Yes No N\
Do you want to assume ! 2
homoscedasticity across Asidvsis'of Analysis of Is the nominal variable a two-point scale?
levels of the independent varlance varlance e A ~
variable? ' [ ' | Yes No
A 's test! | Levene’s Wt
(~ Yes No ) Ssiqitol SR Bl
Analysis of Analysis of
variance variance
Flosttt | Welch statistict !
TS T | '

|
| .
| Brown-Forsythe 1
} statistict

|




/

Yes

Are the cases (e.g., people) in one
category of the nominal variable
matched to the cases In the other
category of that variable?**

A

Are the cases (e.g., people) in one
category of the nominal variable
matched to the cases In each of

the other categories of that vari-
able?**

AN

' Yes No

v ) §, Yes No k.

Within each category of the nomi-
nal variable, is the distribution of

the interval variable symmetric?

| Randomization test : | Randomization : : Randomization |
A I for two Independent | | test for matched | | test l‘?r Independent |
[ ) samples
(" Yes No N | samplestt 3 S b JINIE, SR S~y ) J
! | |Randomization test for,
= Waishiest : |matched pairstt !
i o 4 i i e it 4

' The assumptions In note 5 on page 2 may apply.

¢ |If the nominal varlable Is a two-point scale, the t lest is an
alternative (because in such case F equals t?).

* |f the nominal varlable Is a two-point scale, a special form of the
t test may be used. (See Hays, 1973, pp. 404 and 410.)

14

** See "matched samples” In Glossary,

1 In practice, randomization tests are usually only applied when the
number of cases Is very smail. With larger N's the interval variable
Is generally treated as an ordinal variable.
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TWO VARIABLES: ONE ORDINAL, ONE NOMINAL

Is a distinction made between a dependent and an independent variable?
.

fi. Yes No

Is the ordinal variable dependent? Is the nominal variable two-point?
- .

” Yes No) 7 Yes No O

Is the nominal variable two-point?

-

7 Yes No )\

Are the cases (e.g., people) in one category
of the nominal variable matched to the cases
In the other category of that variable?**

e

{ Kolmogorov-Smirnov two sample test

I Friedman test | Kruskal-Wallis test

e YTs Nlo o
* Somers' d Are the cases (e.g., people) in one category of the
nominal variable matched to the cases in each of
I Sign test I | For significance of Somers’ d with N greater | the other categories of that variable?**
| I | than 10, refer the critical ratio of S to a table | .
! Wilcoxon signed- : | of the unit normal curve; for N less than or | ' & No ™
| rank test | equal to 10, refer d to a table of critical | Yes
L ———— - 1 values of S. | L
| | Freeman's cosfficlent
: Medlan test | 2 of differentiation (8)*%
|
l Mann-Whitney U test :
|
I
|

| Runs test

* Blased estimator.

t Measures of strength of relationship that are appropriate for
unmatched data can also be used descriptively here.

t This coefficlent Implicitly orders the nominal categories. Given n
nominal categories, there are n! values for Somers' d. Freeman's
theta Is equal to the highest of these d's.

i |
| | | I
| | Median test (for |
| | more than 2 groups) J

M o s —— — o ——

I The nominal variable may be treated as ordinal (in which case go to
page 8) or as interval (In which case go to page 11).

** See “matched samples"” In Glossary.

s S . 7 12,




MORE THAN TWO VAﬁIABLES

Is a distinction made between dependent and independent variables?

A
(" Yes No
Is there more than one dependent variable?
e A
Yes No 3 goto
page 17
Do you want to statistically remove the linear
go “.;2 effects of one or more covariates from the
page dependent variable? ,
i Yes No

Do you want to treat the relationships in-

volving the covariate(s) as additive?4

N

Do you want to treat the relationships among
the variables as additive?*

A

kSl

A
" VYes No
Do you want to treat the dependent |
variable and the covarlate(s) as
interval and the Independent vari-
able(s) as nominal?
I
‘d Yes No N
Covarlance analysis?
| F test! |
R s s i ki i
t The assumplions in note 5 on page 2 may apply.
t Nonadditivity can be represented within additive techniques by
using a pattern variable or a product variable. Another possibility
Is to analyze subgroups separately. See Glossary.
¢ Some analysis of covarlance techniques assume statistical
independence between all pairs of Independent variables.
16

Yes

go lo
page 25

N
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(continued from page 16)
* More than two variables = No distinction is made between
dependent and independent variables
Do you want to measure agreement?
A
" Yes No
How do you want to treat the vari- Do you want to test whether the
ables with respect to scale of means (or proportions) on all vari-
measurement? ables are equal?
N \ A
7 Al Nominal All Interval (" Yes No &
All Ordinal Other
Are all the variables Do you want to treat the relation-
. : two-paint? ships among the variables as addi-
Light's agreement Intraclass correla- ST tive?t )
coefficlent (k) tion coefficient ™ Yeu No N Yes No
r -
| Refer critical ratio ! i
: g: rﬁatgnﬁllggmm Robinacire A Do you want to treat all of the vari-
! curve. i L F test! _i pgg;‘; s ables as nominal?*
——— ] e —— v ———— - P
r i
Kendall's coeffl- : | o e
clent of concord- L Cochran's Q“_j I l
PORNY caadl. o ) WaReeseRee Multidimensional
{ For N ggealer tlthan : contingency
7, use x? test for Analysis of
: W; for N les;s than : variance with I ey
orequalto7,re- | repeated measures
| fer s to a table of ' | : Chi-square '
| critical values of s. 1 I F test! 1 j lests {
e e iy e o i R i L . s g -

* Blased estimator.
t The assumptions in note 5 on page 2 may apply.
t Nonadditivity can be represented within additive techniques by

using a pattern varlable or a product variable. Another possiblility is
to analyze subgroups separately. See Glosss

! See note 3 In Appendix C.

¥ There are varlous chi-square test statistics Including Pearson,
maximum likelihood, and Neyman.

** Cochran’s Q Is appropriate for parallel measures from matched
cases as well as for repeated measures on a single set of cases.




10 an " - T Ul PRODEINRY 1S cases for
|iyze subgroups separately. See Glossary, See ':11.:!6!1“:':1 ;;:;I;:E?;'&‘I’ossary

(continued from page 17)

* More than two variables * No distinction {s made between
pendent and independent variables * Relationships are to
treated as additive

- PTTRTEMTWET A FTRTYY FTimiwriou

measures on a single set of cases.

de-
be

Do you want to analyze patterns existing among varlables or among individual cases

(e.g., persons)?

A
3 Varlables Cases B
f;’:z:’ ha:e ;wg o ronore sﬂ:‘f ;’f Do you want to treat the variables
measu:: l‘.":e s?re:g:'h wo A h: as measured on interval scales
association between those sets? and rejationships among them as
o linear? i
r Yes No N\ C  Yes No T |
Do you want to treat the variables l l
as measured on Interval scales Does the ana’ys’s involve (a) one Clustering techniques
and relationships among them as group of Individual cases or (b) two ggﬁ:'pf:t:ll?ﬁlgég*:&%“
linear? or more groups?* linkage, K-means
A A
r Yes No (" One Group Two or More Groups )
Q-type factor
Canonical
correlation go to analysis
pagis go to
! Wilks' lambda 19-20 page 21

Roy's greatest
root criteriont

t The assumptions In note 5 on page 2 may apply.

t “Two or more groups” may mean distinct sets of individuals, a set
of individuals observed on two or more occaslons, etc.

18
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(continued from page 18)

* More than two varlables ¢ No distinction Is made between
dependent and Independent variables e Relationships are to be
treated as additive * Patterns among variables are to be ana-
lyzed * One group of Individuals

Do you want to explore covariation among the variables (e.g., to examine their
relationships to underlying dimensions) or do you want to find clusters of
varlables that are more strongly related to one another than to the remaining

variables?
> 3
" Explore Covarlation Find Clusters )
Do you want to treat the variables
as measured on Interval scales E;‘é;‘:’;“ﬂ techniques
single linkage,
and the relationships among them complete linkage, aver.
as linear?! age linkage, K-means
.
i Yes No
Do you want to explore the rels- Do you want to locate each of the
tionships among the set of varl- variables In multidimensional
ables or do you want to compare space?
the pattern of the relationships AL

with a prespecified pattern? 7 Yes No




g

Yes

3

dimensional

Non-metric multl-

scaling technigues

Relationships

Do you want to preserve the metric
units in which the variables were
measured or to standardize them
by the observed variance of each?

Compare y
Patterns

Do you want to preserve the metric
units in which the variables were
measured or to standardize them
by the observed variance of each?

Do you want to treat

all variables as nominal?
A

7 Yes No

(" Standardize Original Metric A\ /" Standardize Original Metric N Nllulticliimen-
slona
contingency

1 table
lysis
Factor analysis Confirmatory Confirmatory ana
of correlation z::;::rh?‘rézlfsis factor analysis factor analysis \
matrix covarlance of a standardized of varlance- | Chi-square |
matrix variance-covariance covarlance I tests' |
matrix! matrix Pt = 4

T The assumptions In note 5 on page 2 may apply.

e

chi-square (x)*

§ The variables should be standardized using the combined groups
(l.e., the observed group and the prespecified pattern) as a
reference. (Depending on the problem, this may or may not be
equivalent to using the correlation matrix for the observed group.)

See “standardized variable” in Glossary.

20

Maximum likelihood |

I Maximum likellhood |
l chi-square (x)!
| e s J

! Sge note 3 in Appendix C.

* There are varlous chl-square test statistics including Pearson,
maximum likelihood, and Neyman.
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(continued from page 18)
* More than two variables ¢ No distinction Is made between
dependent and independent variables * Relationships are to be
treated as additive * Patterns among varlables are to be ana-
lyzed *» Two or more groups of individualst
Do you want to explore the relationships among a set of variables in two or more
groups simultaneously or do you want to compare the simlilarity of the patterns
of the relationships among a set of variables either (a) across two or more
groups or (b) with a prespecified pattern?
A
r Explore Compare \
Relationships Patterns
Do you want to treat the variables Do you want to preserve the metric
as measured on interval scales units in which the variables were
and the relationships among them measured or to standardize them
as linear? by the observed variance of each?
A AL
” Yes No I+ Standardize Original Metric A\
ay non-metric
Thres-mode multidimansional sceling
yeio techniques
Confirmatory Confirmatory factor
factor analysis analyslis of varlance-
of standardized covarlance matrices
varlance-covariance
t The assumptions In note 5 on page 2 may apply. matrices$

! Maximum Iikellhood |
+ “Two or more groups" may mean distinct sets of Individuals, a set | chi-square (x*)* I

|
imum llkellhood
of Individuals observed on two or more occaslons, etc. Maximu |

chi-square (x?)! i g o . s e

¥ The variables should be standardized using the combined groups as s .
a reference group. (This Is not the same as using the correlation
matrices for the separate groups.) See “standardized varlable” In
Glossary,




ntinued f 16,
Feontie o fene 1y * More than two variables * A distinction is made between de-

pendent and independent variables * There is more than one de-
pendent variable

Is there more than one Independent variable?

AL
r Yes No
Do you want to treat the inde-
Do you want to treat the relation- pendent variable as nominally
ships among the variables as addi- scaled and all of the dependent
tive?t variables as intervally scaled?
A A
(" Yes No M\ (" Yes Noe
Do you want to treat all the Do you want to test only whether
go fo dependent varlables as Interval? the vectors of means are equal for
page 23 A
all categories of the independent
[ Yes No ) variables?
l A s
" Yes No A
go o
page 24
Multivariate Profile
! The assumptions In note 5 on page 2 may apply. :::Ly:é:id pralysiss
L
t Nonadditivity can be represented within additive techniques by | Wilks' lambda*t Wilks' lambda*t

using a patlern variable or a product variable. Another possibility Is ]
to analyze subgroups separately. See Glossary. Roy’s greatest

| Roy's greatest
| root criterion!
|

root criteriont

¥ Some multivariate analysis of variance techniques assume
statistical Independence between all pairs of Independent variables. L Pillal-Bartlett V!

—— —— ———

Plllal-Bartlett V!

| e

|
I
I
|
|
1
- |

* if the Independent variable Is a two-polnt scale, Hotelling’s T2 Is an
alternative (because In such cases the T? test Is equivalent to the
A-test). Mahalanobis' D? Is another alternative in such a case.

22
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(continued from page 22)

Does the analysis Include at least one intervening variable?"

23

= A distinction Is made between dependent and independent
variables ® There Is more than one dependent variable and more
than one Independent variable ¢ Relationships among the vari-
ables are to be treated as additive

Do you want to treat all the dependent and independent variables as interval?

A
{ Yes No

Do you want to treat all the relationships as linear?
AL
7 Yes No )\

27

(" VYes

Does your analysis include at least
one latent (l.e., unmeasured) vari-

No )

|

Canonical correlation

able? } Wilks' lambdat |
— l
{  VYes No ) ', Roy's greatest |
| root criterion! :
i
L Pillal-Bartiett V! |
Structural
Path
models with analysla

latent variables

t The assumptions In note 5 on page 2 may apply.

' See Glossary.




(continued from page 22)

» A distinction Is made between dependent and Independent
variables ¢ There Is more than one dependent variable and more
than one Independent varlable ¢ Relationships among the vari-
ables are not to be treated as additive * All the dependent vari-
ables are Interval

Do you want to treat all the independent variables as nominal and test a set of prespecified relationships?

AL
" Yes No

Multivariate Do you want to treat all the independent vari-
.nagy:as :,g ables as nominal or ordinal and do you want
varlance! to do an empirical search for strong relation-
ships?
| Wilks' lambdat | A
' : r Yes No )
| Roy's greatest !
: root criteriont :
| ¥ t ! |
L E‘E‘QI—B:TBEE - Multivarlate
binary
segmentation
techniques

t The assumptions In note 5 on page 2 may apply.

§ Some multivariate analyslis of varlance techniques assume
statistical independence between all pairs of independent varlables.

24



25
{continued from page 16)

* More than two varlables « A distinction Is made between
dependent and Independent variables s There Is one dependent
variable * No covarlate is used to remove linear effects * Rela-
tionships among the variables are not to be treated as additive

Do you want to do an empirical search for strong relationships or to test a set of prespecified relationships?

A
e Search Test )\
How do you want to treat the var-
lables with respect to scale of Do you want to treat the dependent
measurement? variable as ordinal?
A AL
4 Dependent: Nominal or Interval Other ~ N (" Yes No )
Independent: Nominal or Ordinal
Do you want to treat all the inde-
pendent variables as nominal? go fo
Binary segmentation A page 26
techniques 7 Yes No )
Multidimensional
contingency table
analysis based on
the cumulative
logistic dis-
* This technique depends on a strict assumption of the normality of tributiont
the continuous varlable which Is represented by the ordinal h 1
dependent variable. N Chi-square !
| tests’ _J
" There are varlous chl-square test statistics including Pearson, S e v

maximum likellhood, and Neyman.




(continued from page 25)

* More than two variables = A distinction Is made between de-

pendent and Independent variables * There is one dependent
variable * No covarlate Is used to remove linear effects = Rela-
tionships among the variables are not to be treated as additive
+ A set of prespecified relationships is to be tested = The de-
pendent variable Is not to be treated as ordinal

Do you want to treat any of the independent variables as ordinal?

A

{ Yes

No )

Do you want to treat the dependent variable as Interval and all the independent
variables as nominal and do you want to assume homoscedasticity?

A
(_ Y.' No \
Do you want to treat all of the variables as nominal?!
V.
Analysis of (" Yes No )\
varlance!
i Filestt | Do you want to treal the dependent
b - - Do you want to do a hierarchical variable as interval and all of the
analysis? Independent variables as nominal?
A
' Yes Nlo \ = Yols N|o B
' Multidimensional Analysis of
ro",:::ﬂ'g";ﬁgz'fﬁb’ﬂ, contingency table variance using tt
analysls analysis technique welghted least
allowing an unconstrained squares

| Chi-square
tests*

t The assumptions In note 5 on page 2 may apply.

i Many analysis of varlance techniques assume statistical
Independence between all pairs of Independent varlables.

! See note 3 In Appendix C.

4 Chi-square i

} design matrix

| tasts? !
—_

¥ There are various chi-square test statistics including Pearson,

maximum likellhood, and Neyman.

tt Multidimensional contingency table analysis using welighted least

squares may be appropriate.

26&
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I 1
foantinued from page 16) * More than two variables * A distinction Is made between de-

pendent and Independent varlables * There Is one dependent
variable ¢ No covarlate Is used to remove linear effects s Rela-
tionships among the varlables are to be treated as additive

How do you want to treat the dependent variable with respect to scale of measurement?
AL

f Nominal Ordinal Interval
Do you want to treat all the inde-
Do you want to treat all the inde- 4 pendent varlables as interval?
pendent variables as interval? r A =
Al Y No
7 Yes No )\ &
Do you want to treat all the rela- Dummy variable
Do you want to treat the relation- tionships as linear? rag|resalon or mul-
ships among the independent vari- tiple classification
abfﬂs . Hngar? 3 Is the dependent variable two-point? (" Yes No "\ | analysis
> A
r Yes No Y [ Yes No )
I go fo J
Multiple discriminant pages Multiple curvilinear
function 29-30 regression!
Wilks' lambda!

Do you want to treat all of the inde-
pendent variables as nominal?

A
bk ﬂ'fl'_m;'_'"f'f.ﬂ - 7 Yes No )\

|
|
} Roy's greatest
{ root criterlont
|
]

Multidimenslional contingency
table analysis

Chi-square tests” 1

—_—_——— e ———————




\

Yes

Is there a very high proportion in
one category of the dependent var-
lable (e.g., 90%)?

b, S
( VYes No )\
Dummy variable regression ;
using welghted least squares Do you want to assume homoscedasticity?

A

or maximum likelihood, usually
on a transformed dependent ( Yes
variable (e.g., on logits)

Dummy variable
regression or mul-
tiple classification

No

Dummy variable regression
using weighted least squares
or maximum likelihood, usually

analysis on a transformed dependent
variable (e.g., on logils)
The assumptions in note 5 on page 2 may apply.
See note 1 in Appendix C. I See note 3 in Appendix C.
The type of curvilinear regression referred to here is also known as
polynomial regression. See note 4 in Appendix C for further " There are various chi-square test statistics including Pearson,
discussion, maximum likelihood, and Neyman,

28
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(continued from page 27)
* More than two varlables » A distinction is made between
dependent and Independent variables * There is one dependent
variable * No covarlate Is used to remove linear effects * Rala-
tionships among the variables are to be treated as additive and
linear = All the varlables are Interval
Does the analysis include at least one Intervening variable?
A
i Yes No
Do you want a single measure of
Does the analysis include at least the relationship between the de-
one latent (i.e., unmeasured) vari- pendent variable and all the Inde-
able? pendent variables taken together?
A ¥
(" Yes No { Yes No \
Do you want a statistic which as-
Structural Path Muitiple correlation s/
il i gns to each independent variable
m‘:g”" Ryl EQ‘":' p.s forvason some of the explainable variance
latent In the dependent variable which
varlables L F testt B that independent variable shares

with other independent variables?
A

” Yes No )




Yes No
Regression Do you want a statistic that measures the
coelficlent additional proportion of the total variance in
(b or beta, g)t the dependent variable explainable by each
I F test! | Independent variable, over and above what
| (F equals t2) ! the other independent variables can
e e o J explain?s
A
( Yes No w\
2 Do you want a statistic that meas-
::g::or;?!’"o" ures the additional proportion of
=i the total variance in the dependent
1 F test (F equals t)t ; variable explainable by each inde-
—— e i ——— pendent variable, over and above
what the other independent vari-
ables can explain, expressed rela-
tive to the proportion of variance in
the dependent variable unexplain-
able by the other independent vari-
ables? e
0 Yes No

Blased estimator.
The assumptions In note 5 on page 2 may apply.

Beta Is a standardized version of b. See “standardized coefficient”
in Glossary.

The additional proportion of the total variance explainable by a set
of independent variables, over and above what the other
Independent variables can explain, can be measured by the
difference between the R?'s resulting from two separate multiple
correlation analyses.

See Glossary.

30

Partlal correlation?
(rf2.a,...%)"

—————

Do Fisher's r to Z trans- !
formation and refer criti- |
cal ratio of Z to a table I
|
|

of the unit normal curve.t

F test (F equals t2)!

9




Page 4

Page &

APPENDIX A

SOURCES OF FURTHER INFORMATION ABOUT STATISTICS
APPEARING IN THIS GUIDE

A brief citation is glven below for each statistic and sta-
tistical technique that appears In the Guide. A full entry for
each cited work appears In the list of references.

Mode McNemar, 1969, p. 14
Distribution of relative frequencies Blalock, 1879, p. 31
Distribution of absolute frequencies McNemar, 1969, p. 5
Median McNemar, 1969, p. 14
Inter-quartile deviation McNemar, 1969, p. 19
N-tlles McNemar, 1969, p. 19

Winsorized mean Dixon and Massey, 1968, p. 330
Trimmed mean Andrews et al., 1872, p. 2B1
Hampel estimate of location Andrews et al., 1972, p. 2C3
Biwelght mean Mosteller and Tukey, 1977, p. 205
Mean McNemar, 1969, p. 16
Median McNemar, 1969, p. 14
Standard deviation Hays, 1973, p. 238
Coefficient of variation Blalock, 1979, p. B84




Range

Skewnass

Critical ratlo of skewness measure
Table for testing skewness

Kurtosls

Critical ratio of kurtosis measure
Table for testing kurtosis

Geary's criterion for kurtosis
Distribution of relative frequencles
Distribution of absolute frequencies
N-tiles

Kolmogorov-Smirnov one sample test
Lilliefors test

Chi-square goodness-of-fit test

Regression coefficlent

F test for regression coefficient

Coefflclent from curvilinear regression

F test for coetficlent from curvilinear regression
t test for paired observations

Roblnson's A

Iintraclass correlation cofficlent

F test for Robinson's A (translate to Intraclass
correlation coefficient and test as below)

F test for Intraclass correlation
Krippendorff's f

Page 7

Pearson's product moment r

32

McNemar, 1969, p. 19

McNemar, 1969, p. 25

Snedecor and Cochran, 1967, p. 86
Snedecor and Cochran, 1967, p. 552
McNemar, 1969, p. 25

Snedecor and Cochran, 1967, p. 88
Snedecor and Cochran, 1967, p. 552
D'Agostino, 1870

Blalock, 1979, p. 31

McNemar, 1969, p. 5

McNemar, 1969, p. 19

Slegel, 1958, p. 47

Conover, 1971, p. 302

Hays, 1973, p. 725

Hays, 1973, pp. 623, 630

Hays, 1973, p. 847

Draper and Smith, 1866, p. 129; Hays, 1973, p. 675
Hays, 1973, p. 680

Hays, 1973, p. 424

Robinson, 1857

McNemar, 1968, p. 322

McNemar, 1969, p. 322

McNemar, 1969, p. 322
Krippendorif, 1970, p. 143

Hays, 1973, p. 623



Fisher's r to Z transformation and the critical ratio of Z
Biserial r

Critical ratio for biserial r

Critical ratio for point biserlal r

Tetrachorlc r

Critical ratio for tetrachoric r

Critical ratio for phi

Page 8
Somers' d
Critical ratio of S
Standard error of S, assuming tles
Table of critical values of S, assuming tles
Spearman's rho
Critical ratio for Spearman's rho
Table of critical values of rho
Kendall's tau a
Standard error of S, assuming no tles
Table of critical values of S, assuming no ties
Kendall's tau b
Kendall's tau ¢
Goodman and Kruskal's gamma
Kim's d
Page 9

McNemar's test of symmetry

Yule's Q
Phi

Hays, 1973, p. 662

McNemar, 19689, p. 215; Nunnally, 1978, p. 135
McNemar, 1969, p. 217

McNemar, 1969, p. 219

McNemar, 1968, p. 221; Nunnally, 1978, p. 136
McNemar, 1969, p. 223

McNemar, 1969, p. 227

Somers, 1962
Kendall, 1870, p. 52
Kendall, 1970, p. 55
Harshbarger, 1971, p. 535
Slegel, 19586, p. 202
Slegel, 1956, p. 212
Slegel, 19586, p. 284
Kendall, 1970, p. 5
Kendall, 1970, p. 51
Kendall, 1970, p. 173
Kendall, 1970, p. 35
Kendall, 1970, p. 47
Hays, 1973, p. 800
Kim, 1971, p. 899

Slegel, 1956, p. 63 (when both varlables are two-point scales,
McNemar's test of symmetry and McNemar's test for the significance
of changes are equivalent); Bowker, 1948

Yule and Kendall, 1857, p. 30
McNemar, 1969, p. 225




Critical ratlo of phi

Fisher's exact test

Pearson chl-square

Goodman and Kruskal's tau b

Critical ratlo of Goodman and Kruskal's tau b
Asymmetric lambda

Critical ratlo of lambda

Page 10

Scott's cosflicient of agreement
Cohen's agreement coefficlents (kappas)
Critical ratio for Cohen's kappas
iﬂcﬂemuf‘a test of symmetry
Contingency coefficient

Pearson chi-square

Cramér's V

Symmetric lambda

Critical ratio of symmetric lambda

Page 11

Jaspen's coefficient of multiserial correlation

Fisher's r to Z transformation and the critical ratio of Z
Mayer and Robinson's My,

Fisher's r to Z transformation and the critical ratlo of Z

Page 12

Eta?
Omega?
Intraclass correlation coefficient

34

R

McNemar, 1969, p. 227

Slegel, 1956, p. 96

Hays, 1973, p. 735

Blalock, 1979, p. 307

Goodman and Kruskal, 1972, p. 417
Hays, 1973, p. 747

Goodman and Kruskal, 1963, p. 316

Krippendorff, 1870, p. 142

Cohen, 1960; Cohen, 1968

Fleiss, Cohen, and Everitt, 1969

Bowker, 1948

Hays, 1873, p. 745

Hays, 1973, p. 730

Hays, 1973, p. 745 (Hays calls it Cramér’s statistic); Srikantan, 1970
Hays, 1973, p. 749

Goodman and Kruskal, 1963, p. 321

Freeman, 1965, p. 131

Hays, 1973, p. 682; Harshbarger, 1971, p. 395
Mayer and Robinson, 1877

Mayer and Robinson, 1977; Hays, 1973, p. 6862

Hays, 1973, p. 683
Hays, 1973, p. 484
Hays, 1973, p. 535



Pages 13-14

Page 15

Kelley's epsilon?

F test for eta?, omega?, Kelley's epsilon?,
and Intraclass correlation coefficlent

Analysis of variance

F test for analysis of variance

Waelch statistic

Brown-Forsythe statistic

t test

Bartlett's test

Levene's W

Walsh test

Randomization test for matched pairs
Randomization test for two Independent samples
Randomization test for matched samples
Randomization test for independent samples

Sign test

Wilcoxon signed-rank test

Somers' d

Critical ratlo of S

Standard error of S, assuming tles
Table of critical values of S, assuming ties
Median test

Mann-Whitney U
Kolmagorov-Smimov two sample test
Runs test

Friedman test

35

Kelley, 1935; Glass and Hakstian, 1969
Hays, 1973, p. 471

Hays, 1973, p. 457

Hays, 1973, p. 471

Brown and Forsythe, 1974a

Brown and Forsythe, 1974a

Hays, 1973, pp. 404, 410

Kirk, 1969, p. 61

Brown and Forsythe, 1974b

Slegel, 19858, p. 83

Bradley, 1968, p. 76; Slegel, 1956, p. 88
Bradley, 1968, p. 78; Slegel, 19586, p. 152
Bradley, 1968, p. 80

Bradley, 1968, p. 80

Slegel, 1958, p. 68
Slegel, 1956, p. 75
Somers, 1962
Kendall, 1970, p. 52
Kendall, 1970, p. 55
Harshbarger, 1971, p. 535
Siegel, 1956, p. 111
Slegel, 1958, p. 118
Siegel, 1956, p. 127
Slegel, 1956, p. 136
Hays, 1973, p. 785




Freeman's coefficient of differentiation
Kruskal-Wallls test
Median test (for more than two groups)

Page 16

Covarlance analysis
F test for covarlance analysis

Page 17

Light's agreement coefficlent

Critical ratlo of Light's agreement coefficlent

Kendall’s cosflicient of concordance (W)

Chl-square test for W

Table of critical values of s in the Kendall coefficient of concordance
Intraclass correlation coefficlent

Robinson's A

F test for Intraclass correlation coefficlent

F test for Robinson's A (translate to intraclass correlation and test as
above)

Cochran's Q

Analysis of varlance with repeated measures

F test for analysis of varlance with repeated measures
Muitidimensional contingency table analysis

Chl-square tests

Page 18

Canonlcal correlation

Freeman, 1965, p. 112
Slegel, 1956, p. 184
Siegel, 1956, p. 179

Snedecor and Cochran, 1967, p. 419
Snedecor and Cochran, 1967, p. 424

Light, 1971

Light, 1971

Slegel, 19586, p. 229
Slegel, 1956, p. 236
Siegel, 1956, p. 286
McNemar, 1969, p. 322
Robinson, 1857
McNemar, 1969, p. 322

Robinson, 1957, p. 23;
McNemar, 1869, p. 322

Slegel, 1958, p. 161
McNemar, 1969, p. 338
McNemar, 1969, p. 340

Statistics Department, University of Chicago, 1973 (ECTA);
Landis et al., 1976 (GENCAT);
Flenberg, 1977 (General)

Flenberg, 1977, p. 36 (Pearson and maximum likelihood)

Cooley and Lohnes, 1971, p. 168;
Harris, 1975, p. 132




Wilks' lambda

Roy's greatest root criterion

Pillal-Bartlett V
Q-type factor analysis

Clustering technglues such as single linkage, complete linkage,
average linkage, K-means

Pages 19-20

Factor analysis of correlation matrix
Factor analysis of varlance-covarlance matrix
Confirmatory factor analysis of a standardized variance-covariance

matrix
Maximum likelihood chi-square
Confirmatory factor analysis of varlance-covarlance matrix

Maximum likelihood chi-square

Non-metric multidimensional scallng techniques

Multidimensional contingency table analysis

Chi-square tests

Clustering techniques such as single linkage, complete linkage,
average linkage, K-means

Page 21

Three-mode factor analysis

Cooley and Lohnes, 1971, p. 175;
Morrison, 1976, p. 222; Harris, 1975, p. 143

Morrison, 1978, p. 178;
Harris, 1975, pp. 103, 143

Morrison, 1978, p. 223
Overall and Kiett, 1972, p. 201 ; Gorsuch, 1974, p. 279
Sneath and Sokal, 1973

Gorsuch, 1974
Gorsuch, 1974, p. 271

Gorsuch, 1974, pp. 116, 166 (General);
Sorbom and Joreskog, 1976 (COFAMM)

Gorsuch, 1974, pp. 118, 139;
Sbrbom and Joreskog, 1976 (COFAMM)

Gorsuch, 1974, pp. 116, 166 (General);
and Joreskog, 1976 (COFAMM)

Gorsuch, 1974, pp. 118, 139;
Sorbom and Jdreskog, 1976 (COFAMM)

Kruskal and Wish, 1978 (General);

Kruskal, 1964a, 1984b (MDSCAL);

Guttman, 1968; Lingoes, Roskam, and Borg, 1979 (MINISSA);
Young and Torgerson, 1976 (T ORSCA);

Takane, Young, and DeLeeuw, 1977 (ALSCAL);

Kruskal, Young, and Seery, 1973 (KYST)

Statistics Department, University of Chicago, 1973 (ECTA),
Landis et al., 1976 (GENCAT);
Flenberg, 1877 (General)

Flenberg, 1977, p. 36 (Pearson and maximum likelihood)
Sneath and Sokal, 1973

Gorsuch, 1974, p. 283




Three-way non-metric multidimensional scaling technigues

Confirmatory factor analysls of standardized variance-covarlance
matrices

Maximum likelihood chi-square
Confirmatory factor analysis of variance-covariance matrices
Maximum Iikelihood chl-square

Page 22

Multivariate analysis of varlance

Wilks' lambda

Roy's greatest root criterion

Pillal-Bartlett V

Profile analysis

Wilks' lambda

Roy's greatest root criterion
Plilal-Bartlett V

Page 23

Structural models with latent variables
Path analysls
Canonical correlation

v T e

Kruskal and Wish, 1978, p. 60 (General);

Carroll and Chang, 1970 (INDSCAL);

Harshman, 1970 (PARAFAC);

Lingoes and Borg, 1976 (PINDIS);

Carroll, Pruzansky, and Kruskal, 1980 (CANDELINC);
Ramsay, 1977 (MULTISCAL);

Takane, Young, and DelLesuw, 1977 (ALSCAL):
Sands and Young, 1980 (ALSCOMP3)

Gorsuch, 1974, pp. 116, 251 (General);
Sérbom and Jéreskog, 1976 (COFAMM)

Gorsuch, 1974, pp. 118, 139;
Sorbom and Jdreskog, 1976 (COFAMM)

Gorsuch, 1974, pp. 118, 251 (General);
Sorbom and Joreskog, 1976 (COFAMM)

Gorsuch, 1874, pp. 118, 139;
Sorbom and Joreskog, 1976 (COFAMM)

Cooley and Lohnes, 1971, p. 223;
Harris, 1975, p. 101;
Bock and Haggard, 1068

Cooley and Lohnes, 1971, p. 175;
Morrison, 1976, p. 222:
Harrls, 1975, p. 109; Olson, 1976

Morrison, 1976, p. 1 78;
Harrls, 1975, pp. 103, 109; Olson, 1978

Morrison, 1978, p. 223; Olson, 1976
Morrison, 1978, pp. 153, 205
Morrison, 1978, p. 222

Morrison, 1976, p. 178

Morrison, 19786, p. 223

Joreskog and S8rbom, 1978
Kerlinger and Pedhazur, 1973, p. 305

Cooley and Lohnes, 1971, p. 168;
Harris, 1975, p. 132




Wilks' lambda

Roy's greatest root criterion

Plllal-Bartlelt V

Page 24

Multivariate analysis of varlance

Wilks' lambda

Roy's greatest root criterlon

Pillal-Bartlett V
Multivariate binary segmentation techniques

Page 25

Binary segmentation techniques

Muitidimensional contingency table analysis based on the cumulative
logistic distribution

Chi-square tests

Page 26

Analysis of variance
F test for analysis of variance
Multidimensional contingency table analysis

Chl-square tests

Multidimenslonal contingency table analysis technique allowing an
unconstrained design matrix

N N

Cooley and Lohnes, 1971, p. 175;
Morrison, 1976, p. 222;
Harris, 1975, p. 143

Morrison, 1976, p. 178;
Harris, 1975, pp. 103, 143

Morrison, 1976, p. 223

Cooley and Lohnes, 1971, p. 223;
Harrls, 1975, p. 118;
Bock and Haggard, 1968

Cooley and Lohnes, 1971, p. 175;
Morrison, 1976, p. 222;
Harris, 1975, p. 109; Olson, 1976

Morrison, 1976, p. 178;
Harris, 1975, pp. 103, 109; Olson, 1976

Morrison, 19786, p. 223; Olson, 1976
Glllo, 1972 (MAID); Glillo and Shelley, 1974

Sonquist, Baker, and Morgan, 1974 (SEARCH, formerly known as AID)

Bock, 1975, p. 541 (General);
Bock and Yales, 1973 (MULTIQUAL)

Bock, 1975, p. 518 (Pearson and maximum lkellhood)

McNemar, 1969, p. 325
McNemar, 1969, p. 349

Statistics Department, University of Chicago, 1973 (ECTA);
Flenberg, 1977 (General)

Flenberg, 1977, p. 38 (Pearson and maximum likellhood)
Landis et al., 1978 (GENCAT)




Chi-square tesls
Analysis of varlance using welghted least squares

Pages 27-28

Multiple discriminant functlon
Wilks' lambda
Roy's greatest root criterlon

Plllai-Bartlett V

Dummy varlable regression using weighted least squares or maximum
likellhood

Dummy variable regression or muitiple classification analysis

Multidimensional contingency table analysis

Chi-square tests
Multiple curvilinear regression

Pages 29-30

Structural models with latent variables
Path analysis

Multiple correlation

F test for multiple correlation
Regression coelficient

F test for regression coefficlent
Part correlation
F test for part correlation

40

Fienberg, 1977, p. 36 (Pearson and maximum |Ikellhood)

Draper and Smith, 1968, p. 77;
Rao, 1965, p. 178

Cooley and Lohnes, 1971, p. 243
Cooley and Lohnes, 1971, p. 248

Morrison, 1976, p. 178;
Harrls, 1975, pp. 103, 109

Morrison, 1976, p. 223

Draper and Smith, 1966, pp. 77, 134 (Welghted least squares — General);
DuMouchel, 1974, 1976 (Maximum likelihood — DREG);
Landis et al., 1967 (GENCAT)

Draper and Smith, 1966, p. 134;
Andrews et al., 1973;
Kerlinger and Pedhazur, 1973, p. 101

Andrews and Messenger, 1973 (MNA);

Statistics Department, University of Chicago, 1873 (ECTA);
Landis et al., 1976 (GENCAT),

Flenberg, 1977 (General)

Flenberg, 1977, p. 36 (Pearson and maximum likelihood)
Neter and Wasserman, 1974, p. 273

Jbreskog and Strbom, 1978
Kerlinger and Pedhazur, 1973, p. 305
Hays, 1973, p. 707

Hays, 1973, p. 709

Hays, 1973, pp. 704, 708,
Kerlinger and Padhazur, 1973, pp. 56, 61

Kerlinger and Pedhazur, 1973, p. 66
McNemar, 1969, p. 185
McNemar, 1969, p. 321
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Partlal correlation McNemar, 1869, p. 183
Fisher's r to Z transformation and the critical ratio of Z McNemar, 1969, p. 185
F test for partial correlation McNemar, 1969, p. 185




APPENDIX B
PROGRAMS THAT COMPUTE STATISTICS LISTED IN THE GUIDE

For many of the statistics and statistical techniques that
appear in the Guide, there exist one or more programs that
calculate the statistic or use the technique. The entries in
this Appendix are intended to guide the reader to an appro-
priate program or command. In some cases, the program or
command listed provides a functional approximation to the
indicated statistic (for example, many programs give prob-
ability values rather than critical ratios). An asterisk follow-
ing a program name means that the statistic, while not
printed, can be readily obtained or, in more complicated
cases, that there is documentation in the User's Manual

explaining how to obtain it.

In the following table, at least one program per column is
cited for each entry whenever possible. If multiple programs
could be cited, only the program or programs most fre-
quently used for the particular purpose are listed. The appro-
priate program, command, or procedure was determined by
a review of the published documentation for each system; it
is therefore possible that some errors, particularly of omis-
sion, may have been made. It is important to note the dates
of the documentation (see References) as program pack-
ages are constantly being improved and augmented.




OSIRIS MIDAS SPSS SAS BMDP OTHER
Page 4
Mode TABLES HISTOGRAM FREQUENCIES UNIVARIATE P2D -
ONEWAY
Distribution of
relative frequencies TABLES HISTOGRAM FREQUENCIES UNIVARIATE P2D =
ONEWAY CHART
Distribution of TABLES HISTOGRAM FREQUENCIES UNIVARIATE P2D -
absolute frequencies ONEWAY CHART
Median TABLES DISTRIBUTION FREQUENCIES UNIVARIATE P2D -
Inter-quartile deviation TABLES" - - UNIVARIATE** P2D -
N-tiles TABLES DISTRIBUTION — UNIVARIATE - -
Page 5
Winsorized mean - - - - P7D -
Trimmed mean - - - x P2D =
Hampel estimate of - - - - P2D -
location
Biwelght mean - - - - P2D -
Mean TABLES DESCRIBE CONDESCRIPTIVE UNIVARIATE PiD
USTATS FREQUENCIES MEANS P2D -
Median TABLES DISTRIBUTION FREQUENCIES UNIVARIATE P2D -
Standard deviation TABLES DESCRIBE CONDESCRIPTIVE UNIVARIATE P1D -
USTATS FREQUENCIES MEANS P2D
i - - UNIVARIATE P1D -
Cosfficlent of varlation MEANS

** SAS prints Q, - Q,; our reference refers to (Q,-Q,)/2.
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OSIRIS MIDAS SPSS SAS BMDP OTHER
Range TABLES DESCRIBE CONDESCRIPTIVE UNIVARIATE P1D -
USTATS FREQUENCIES P2D
Skewness TABLES DESCRIBE CONDESCRIPTIVE UNIVARIATE P2D -
FREQUENCIES MEANS
Critical ratio of - - - - P2D -
skewness measure
Table for testing - - - = == -
skewness
Kurtosis TABLES DESCRIBE CONDESCRIPTIVE, UNIVARIATE P2D -
FREQUENCIES MEANS
Critical ratlo of - — - - P2D —
kurtosis measure
Table for testing - - - - = =
kurtosis
Geary's criterion - - - — = =
for kurtosis
Distribution of TABLES HISTOGRAM FREQUENCIES UNIVARIATE P2D -
relative frequencies ONEWAY CHART
Distribution of TABLES HISTOGRAM FREQUENCIES UNIVARIATE P2D -
absolute frequencies ONEWAY CHART
N-tiles TABLES DISTRIBUTION - UNIVARIATE - -
Kolmogorov-Smirnov - — NPAR - - -
one sample tesl
Lilliefors test - o = UNIVARIATE & =
Chi-square - - NPAR FREQ - -
goodness-of-fit test




Page 6
Regression

coelfficient

F test for
regression coefficlent

Coefliclent from
curvilinear regression

F test for
coefficient from
curvilinear regression

t test for paired
observations

Robinson's A

Intraclass correlation
coefficlent

F test for Robinson's A

(translate to Intraciass
correlation coefficient
and test as below)

F test for

Intraclass correlation
coefficlent
Krippendorff's t

Page 7

Pearson's product
moment r

Fisher'srto Z
transformation and
the critical ratio of Z

Biserial r

** Requires a sequence of MIDAS commands. See Statistical Research Laboratory, 1976, page 274,

REGRESSN

REGRESSN

MDC

MDC

REGRESSION

REGRESSION

POLY

POLY

PAIR

ANOVA*

ANOVA

CORRELATE
MCORR

CORRELATE
MCORR

REGRESSIONT

REGRESSION1

REGRESSION®,1
ONEWAY

REGRESSION®, 1
ONEWAY

T-TEST

PEARSON CORR
CROSSTABS

PEARSON CORR
CROSSTABS

t All capabllities In SPSS REGRESSION are also avallable in NEW REGRESSION.
 Requires that the data analyzed be the differences between the paired observations.
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GLM
REG

GLM
REG
GLM

GLM

MEANSt

CORR

CORR

PIR
P4F
PR
PSR

P5R

PBD
PAF




OSIRIS
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MIDAS SPSS SAS

BMDP

OTHER

Critical ratio for
biserlal r

Critical ratio for
point biserial r

Tetrachoric r

Critical ratlo for
tetrachoric r

Critical ratio
for phi

Page 8

Somers' d
Critical ratio of S
Standard error of
S, assuming ties

Table of critical values
of S, assuming ties

Spearman'’s rho
Critical ratio for
Spearman’s rho
Table of critical
values for rho
Kendall's tau a

Standard error of
S, assuming no ties

TABLES*

TABLES

TABLES

TWOWAY* CROSSTABS® FREQ*

- CROSSTABS FREQ

- CROSSTABS FREQ
NONPAR CORR

— —_— -—

RCORR NONPAR CORR FREQ

RCORR NONPAR CORR FREQ

- NONPAR CORR -

P4F
PAF

PaF*

P4F

P4F

P4F

PAF




Table of critical values - — = =
of S, assuming no ties

Kendall's tau b

TABLES

RCORR CROSSTABS FREQ P4F
TWOWAY CORR

Kendall's tau ¢ TABLES - CROSSTABS FREQ** P4F**
Goodman and TABLES RCORR CROSSTABS FREQ PAF
Kruskal's gamma TWOWAY
Kim's d - = = =
Page 8
McNemar's test - TWOWAY NPAR — P4F
of symmetry
Yule's Q — - - — P4F
Phi TABLESt TWOWAY Tt CROSSTABS FREQt P4F
Critical ratio of phi TABLES* TWOWAY* CROSSTABS" FREQ* P4F*
Fisher's exact test - TWOWAY CROSSTABS - P4F
Pearson chi-square TABLES TWOWAY CROSSTABS FREQ PAF
Goodman and - TWOWAY — - P4F
Kruskal's tau b
Critical ratio of - - - - -
Goodman and Kruskal's
tau b
Asymmetric lambda TABLES TWOWAY CROSSTABS FREQ P4F
Critical ratio of lambda TABLES - - FREQ P4F

Page 10

Scott's coefficient
of agreement

** SAS and BMDP refer to this as Stuari’s tau c.
t For two dichotomous varlables, Cramér's V (in MIDAS, Cramér's phi) is equivalent to phi.




OSIRIS

MIDAS
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SPsS

SAS

BMDP

OTHER

Cohen's agreement
coefficients (kappas)

Critical ratlo for
Cohen's kappas

McNemar's test of
symmetry

Contingency coefficient
Pearson chl-square
Cramér's V

Symmetric lambda

Critical ratio of
symmetric lambda

Page 11

Jaspen's coefficient of
multiserial correlation

Fisher'srto Z
transformation and
the critical ratio of Z

Mayer and
Robinson's MW

Fisher'srto Z

transformation and
the critical ratio of Z

Page 12
Eta?

TABLES

TABLES

TABLES
TABLES
TABLES
TABLES
TABLES

ANOVA
MCA

TWOWAY
TWOWAY
TWOWAY
TWOWAY

ANOVA

CROSSTABS
CROSSTABS
CROSSTABS
CROSSTABS
CROSSTABS

BREAKDOWN
ANOVA

FREQ
FREQ
FREQ
FREQ
FREQ

GLM
ANQVA

P4F

P4F
P4F
PaF
PAF
PAF




Omega?’

Intraclass correlation
coefficient

Kelley's epsilon?

F test for eta?, omega?,
Kelley's epsilon?, and
Intraclass correlation
coefficlent

Pages 13-14

Analysis of variance

F test for analysis
of varlance

Welch statlstic

Brown-Forsythe
statistic

t test
Bartlett's test

Levene's W
Walsh test

Randomization test
for matched pairs

Randomization test for

two Iindependent samples

Randomization test for
matched samples

ANOVA**
Mc LTl

ANOQVA

ANOVA

ANOVA

ANOVA*

ANOVA

ANOVA

ANOVA

** In OSIRIS, Kelley's epsilon? Is labelled adjusted eta?.

BREAKDOWN
ANOVA

ANOVA
ONEWAY
BREAKDOWN
MANOVA

ANOVA
ONEWAY

BREAKDOWN
MANOVA

T-TEST

ONEWAY
MANOVA

GLM
ANOVA

GLM
ANOVA

GLM
ANOVA

GLM
ANOVA

GLM
ANOVA

T-TEST
DISCRIM

P7D*

Py
P7D

PV
P7D

P7D

P7D
POD

P7D
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OSIRIS MIDAS SPSS SAS BMDP OTHER

Randomization test for — - - - — -

Independent samples

Page 15

Sign test TABLES* RPAIR NPAR MRANK P3S -

Wilcoxon signed-rank TABLES* RPAIR NPAR UNIVARIATE P3s -

test

Somers' d - - CROSSTABS FREQ PAF -

Critical ratio of S TABLES - CROSSTABS FREQ P4F -

Standard error of S, - - = - 5 —

assuming tles

Table of critical values - - - - =~ =

of S, assuming ties

Median test - TWOSAMPLE NPAR NPARTWAY - -
MRANK

Mann-Whitney U TABLES TWOSAMPLE NPAR NPAR1WAY P3s -
MRANK

Kolmogorov-Smirnoyv

two g:,?“ple fest - TWOSAMPLE NPAR -— -_— -_—

Runs test - - NPAR** - - -

Frledman test - - NPAR RANK* P3s -

RELIABILITY MRANK

Freeman's coefficient - - - - - -

of differentiation

Kruskal-Wallis test TABLES KSAMPLE NPAR NPARTWAY P3s -
MRANK

Median test (for more - KSAMPLE NPAR NPARTWAY - -

than 2 groups) MRANK




Page 18
Covarlance analysis MANOVA

F test for MANOVA
covariance analysis

Page 17

Light's agreement -
coefficient

Critical ratio of Light's -
agreement coefficient

Kendall's coefficlent —
of concordance (W)

Chl-square test for W -

Table of critical values —
of 8 In the Kendall

coefficlent of

concordance

Intraclass correlation -
coelficlent

Robinson's A -

F test for Intraclass -
correlation coelficlent

F test for Robinson's A -
(translate to intraclass

correlation and test as

above)

Cochran's Q -

Analysis of variance -
with repeated measures

** |IN SPSS, this test is called Wald-Wolfowitz.

COVAR

COVAR

RCORR

RCORR

ANOVA*

ANOVA

ANOVA
MANOVA

ANOVA
MANOVA

NPAR
RELIABILITY

RELIABILITY
MANOVA

52

‘MHRANK

GLM

GLM

GLM
ANOVA

P1V
pav
Pav

P1V

P2V
P4V

Pas

P2v
Pav



OSIRIS MIDAS SPSS SAS BMDP OTHER
F test for analysis of - - RELIABILITY GLM P2v -
variance with repeated ANOVA ANOVA P4V
measures
Multidimenslonal — - - FUNCAT P4F ECTA
contingency table GENCAT
analysis
Chi-square tests - - - FUNCAT P4F ECTA

GENCAT

Page 18
Canonical correlation - CANONICAL CANCORR CANCORR PEM -
Wilks' lambda - - CANCORR CANCORR — -
Roy's greatest root - CANONICAL - CANCORR - -
criterion
Pillal-Bartlett V - - - CANCORR - —
Q-type factor analysis FACTAN FACTOR FACTOR FACTOR P4M ==
Clustering techniques CLUSTER CLUSTER -~ CLUSTER P2M —
such as single linkage, FASTCLUS PKM
complete linkage,
average linkage,
K-means
Pages 19-20
Factor analysis of FACTAN FACTOR FACTOR FACTOR P4M -
correlation matrix
Factor analysis of - FACTOR - FACTOR P4M -

variance-covariance
matrix




Confirmatory factor
analysis of a
standardized variance-
covariance matrix

Maximum likelihood
chi-square

Confirmatory factor
analysis of varlance-
covarlance matrix

Maximum likellihood
chi-square

Non-metric
multidimensional
scaling techniques

Clustering techniques
such as single linkage,
complete linkage,
average linkage,
K-means

scaling techniques

MINISSA

CLUSTER

ROTATE

ROTATE

CLUSTER

ALSCAL

FUNCAT

FUNCAT

VARCLUS

ALSCAL

P4F

P4F

P1M

COFAMM

COFAMM

COFAMM

COFAMM

MINISSA
MDSCAL
TORSCA
KYST
ALSCAL

ECTA
GENCAT

ECTA
GENCAT

INDSCAL
PARAFAC
PINDIS
CANDELINC
MULTISCAL
ALSCAL
ALSCOMP3
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OSIRIS MIDAS SPSS SAS BMDP OTHER

Confirmatory factor - . - FACTOR - COFAMM

analysis of

standardized

variance-covariance

matrices

Maximum likelihood - - - FACTOR - COFAMM

chi-square

Confirmatory factor - - - FACTOR - COFAMM

analysis of variance-

covariance matrices

Maximum likelihood — - - FACTOR - COFAMM

chi-square

Page 22

Multivariate analysis MANOVA MANOVA MANOVA GLM P4V -

of variance ANOVA

Wilks' lambda MANOVA - MANOVA GLM P4V —
ANOVA

Roy's greatest root - MANOVA MANOVA GLM P4V -

criterion ANOVA

Pillai-Bartlett V - - MANOVA GLM - -
ANOVA

Profile analysis - PROFILE MANOVA GLM P4V —
ANOVA

Wilks' lambda - - MANOVA GLM P4V -
ANOVA

Roy's greatest root - PROFILE MANOVA GLM P4V =

criterion ANOVA

Pillai-Bartlett V — - MANOVA GLM - -
ANOVA

Page 23




Path analysis
Canonical correlation
Wilks' lambda

Roy's greatest root
criterion

Plllal-Bartlett V
Page 24

Multivariate analysis
of variance

Wilks' lambda

Roy's greatest root
criterion

Pillal-Bartlett V

Multivariate binary
segmentation

techniques
Page 25

Binary segmentation
techniques

Multidimensional
contingency table
analysis based on the
cumulative logistic
distribution
Chi-square tests
Page 26

Analysis of variance

** Formerly known as AlD.

MANOVA

MANOVA

SEARCH"*

- REGRESSION®,t

CANONICAL
= CANCORR
CANONICAL —

CANCORR

- MANOVA

- MANOVA

- MANOVA

= MANOVA

- ANOVA
MANOVA

t Al capabllities in SPSS REGRESSION are also avallable in NEW REGRESSION,
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SYSREG
CANCORR
CANCORR
CANCORR

CANCORR

GLM
ANOVA

GLM
ANOVA

GLM
ANOVA

GLM
ANOVA

GLM
ANOVA

PEM b
PaV =
Pav =
P4V =
= MAID
- MULTIQUAL
= MULTIQUAL
PV =
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OSIRIS MIDAS SPSS SAS BMDP OTHER
F test for analysis - - ANOVA GLM P1v —
of varlance MANOVA ANOVA
Multidimenslonal - - - FUNCAT P4AF ECTA
contingency table
analysis
Chl-square tests - - - FUNCAT P4F ECTA
Multidimensional - - - FUNCAT — GENCAT
contingency table
analysis technique
allowing an
unconstrained
design matrix
Chi-square tests - - - FUNCAT - GENCAT
Analysis of variance - - - GLM p2v -
using welghted least
squares
Pages 27—28
Multiple discriminant - DISCRIMINANT DISCRIMINANT DISCRIM PTM -
function SEPARATE CANDISC
Wilks' lambda ~ - DISCRIMINANT CANDISC PTM =
Roy's greatest rool - - —~ CANDISC -~ -
criterion
Pillal-Bartiett V - - - CANDISC - —_
Dummy variable DREG - - FUNCAT P3R* GENCAT
regression using PAR*

welghted least squares
or maximum likellhood




Dummy variable
regression or multiple
classification analysis
Multidimensional
contingency table
analysis

Chi-square tests
Muitiple curvilinear
regression

Pages 20—30

Structural models with
latent variables

Path analysis

Multiple correlation

F test for mulitiple
correlation

Regression coefficient

F test for regression
coefficient

Part correlation

F test for part
correlation

Partial correlation

Fisher'srto Z
transformation and the
critical ratlo of Z

F test for partial
correlation

REGRESSN*

MCA

MNA

REGRESSN

REGRESSN

REGRESSN

REGRESSN

REGRESSN**
REGRESSN

PARTIALS
REGRESSN

REGRESSN

REGRESSION*

SELECT*

REGRESSION

REGRESSION

REGRESSION

REGRESSION

REGRESSION
REGRESSION

REGRESSION

REGRESSION

REGRESSION*, 1
ANOVA

REGRESSION®,t
MANOVA

REGRESSION®,t
REGRESSION '

REGRESSIONT

REGRESSIONt

REGRESSIONt

REGRESSIONt
REGRESSION*,t

PARTIAL CORR
REGRESSION

PARTIAL CORR
REGRESSIONt

GLM*

FUNCAT

FUNCAT

GLM

SYSREG

GLM
REG

GLM
REG

GLM
REG

GLM
REG

GLM
REG

GLM
REG

PIR* -
P4F ECTA
GENCAT
P4F ECTA
GENCAT
PIR* -

- LISREL
P1R -
P1R -
P1R -
P1R -
P8R =

** The square of the part correlation Is printed: It Is labelled Marginal RSQD.
t Al capabliities in SPSS REGRESSION are also avallable In NEW REGRESSION.



APPENDIX C

SOME NEW OR RARELY USED STATISTICAL TECHNIQUES

There are in the statistical literature many statistical
techniques that are not included in this Guide for various
reasons — they may be new and not yet well-known, or they
may be old and seldom used. Some of these techniques are
noted below.

1. Muitivariate analysis of ordinal data.

Developing methods of multivariate analysis appropriate
to the uniquely ordinal properties of ordinal scales, includ-
ing constructing coefficients that measure multiple and
partial assoclation among ordinal measures, has been ex-
tensively discussed in the methodological literature of the
1970s but has proven to be a difficuilt problem. The issues
are not yet resolved. Useful discussions of the problems,
and references to other relevant literature, can be found in
Blalock (1975), Kim (1975), and Mayer and Robinson (1977).
From a practical standpoint, most analysts who desire to
perform a multivariate analysis with ordinal measures disre-
gard the uniquely ordinal aspects of their measures and
treat them as either nominal scales or interval scales.

2. Developments In nonmetric multidimensional scaling.
Nonmetric multidimensional scaling has undergone con-
siderable development and expansion in recent years
through several distinct lines of methodological activity.
One such line Is yielding a varlety of different algorithms for

performing multidimensional mappings simultaneously for
separate groups so as to generate information about how
the groups differ. An early algorithm for this type of analysis,
INDSCAL (Carroll and Chang, 1970), has now been comple-
mented by several others that make fewer (or different)
assumptions and that are in other ways more powerful and
general. These include CANDELINC (Carroll, Puzansky, and
Kruskal, 1980), PINDIS (Lingoes and Borg, 1976), MULTISCAL
(Ramsay, 1977), ALSCOMP3 (Sands and Young, 1980), and
ALSCAL (Takane, Young, and DelLeeuw, 1977). (In the de-
cision tree, these are referred to as three-way nonmetric
multidimensional scaling techniques.)

A second line of methodological investigation has
focused on the statistical significance of the obtained fits —
that is, the probability that the correspondence between the
muitidimensional scaling solution and the observed data
could have been obtalned purely by a random placement of
a specified number of points in a space of given dimension-
ality; see Isaac and Poor (1974), Langeheine (1980), MacCal-
lum and Cornelius (1977), Spence and Graef (1974), and
Spence and Ogilvie (1973).

A third line of development has pursued “confirmatory”
multidimensional scaling—the attempt to fit data to an
existing structure; see Borg and Lingoes (1980), and Lingoes
and Borg (1976).




3. Developments In techniques for multidimensional
contingency table analysis.

Multidimensional contingency table analysis has been
used mainly with nominal scales, but recent developments
allow its use with interval scales that have a small number
of categories. Because such applications are not yet com-
mon, use of multidimensional contingency table analysis
with interval scales Is not included in the decision tree
portion of this Guide. For further information, see Fienberg
(1977) and Landis et al. (1976).

4. Polynomial regression and nonlinear regression.

As used in this Guide, curvilinear regression refers to
polynomial regression, a type of regression that is linear in
Its parameters but not In its variables (see Draper and Smith,
1966, page 129). This Is different from a type of regression
that is nonlinear in its parameters, usually referred to as
nonlinear regression (see Draper and Smith, 1966, p. 263).

5. Reduced varlance regression techniques.

When one is attempting to predict a dependent variable
using two or more predictor variables, the appropriate
weights to be applied to those predictor variables can be
expected to show substantial variation from one random
sample to another If the correlations among the predictor
variables are high. Sometimes this is referred to as “insta-
bility” of coefficients that results from high multicollinearity
among the predictor variables. In recent years there has
been considerable discussion in the statistical literature
about ways to achieve greater stability in regression coef-
ficlents by accepting certain biases. The underlying as-
sumption is that it may be better to use coefficients that
tend to be reasonably close to the ideal (population) value
but that on average tend to come out slightly different from
this value, rather than a coefficlent that averages to the
correct value over many samples but that In any one sample
may be very far off. Although theoretically interesting, we

believe these developments have not yet reached the point
where most soclal science data analysts can routinely apply
them and expect to obtain better results than would be pro-
duced by more traditional approaches. Useful discussions
and reviews of biased estimation techniques (including,
particularly, “ridge regression”) have been provided by the
following authors: Darlington (1978), Dempster, Schatzoff,
and Wermuth (1977), Fennessey and d’Amico (1980), Roze-
boom (1979), and Smith and Campbell (1980).

6. Exploratory data analysis.

“Exploratory data analysis"” Is a phrase associated with a
collection of techniques proposed by Tukey (1977) that are
intended to let the analyst explore a set of data while
making minimal assumptions. Although based on well
accepted statistical foundations, Tukey's terminology is
nontraditional and his techniques are not yet widely used.
Summaries of some of his key ideas can be found in Hartwig
(1979) and Leinhardt and Wasserman (1978).

7. Survival analysis.

Techniques for survival analysis (i.e., the analysis of time
Iintervals between events) are not included in the tree portion
of this Guide because, at least in the past, their application
In the soclal sciences has largely been restricted to specific
disciplines, such as demography. It is possible, however,
that these techniques could profitably be applied to prob-
lems encountered in other contexts, such as studies of resi-
dential and occupational mobility, completion of education,
and retirement. Techniques to handle cases with incomplete
data (censored data), data involving competing risks, co-
varlates, and interactions have been developed. Texts that
describe such techniques include Kalbfleisch and Prentice
(1980) and Gross and Clark (1975).

8. Information theory and the analysis of contingency tables.
A measure of uncertainty, H, derived from information



theory, can be used to measure the degree of assoclation
between two or more nominal variables. (The coefficient of
assoclation is often called U.) More generally, information
theory has been used to develop methods for analyzing
multidimensional contingency tables. For details, see
Gokhale and Kullback (1978).

9. Sampling errors of statistics from complex designs.

An assumption often required for the use of inferential
statistics is that the observations are based on a simple
random sample from some population. This assumption Is
required because the estimates of sampling error assume
that each observation is independent of all others. Often,
however, stratification or clustering Is used instead of a
simple random procedure, and this Introduces non-
independence among the observations. Two programs are
available in the OSIRIS IV software package that can be
used to estimate the sampling error of statistics from
clustered or stratified samples: &PSALMS estimates the
sampling error of means, and &REPERR estimates the
sampling error of regression statlistics.

10. The polychoric correlation coefficlent
for two ordinal variables.

It was pointed out in the Instructions and Comments sec-
tion of this Guide that ordinally scaled variables may be
transformed to ranks, and the transformed data then treated
as Intervally scaled. Another approach has been suggested
for the case of two ordinal variables. This approach
assumes that the ordinal variables have been generated
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from unobserved (latent) interval-scale variables with a
bivariate-normal distribution. Then the “true” product-
moment correlation is estimated by a measure called the
polychoric correlation coefficient (Olsson, 1979, 1980). The
polychoric coefficient is a generalization to polychotomies
(scales with more than two points) of the tetrachoric coef-
ficlent, which is a simllar measure used in the case of two
dichotomous variables (see the cautionary footnote on
page 7).

11. Time series analysis.

Generally, time series analysis uses regression tech-
niques (often something other than ordinary least squares)
to analyze or predict change. Economists have been the
leaders among soclal scientists in developing this area, but
other soclal scientists increasingly are finding time series
analysis to be relevant to their analytic problems. The Guide
does not include time series analysis— partly because the
decision-tree approach does not lend itself well to the
analysls of data of a special type (which is the case with
time serles data), and partly because time series analysis
has not yet become widely used by soclal scientists (except
economists). However, because several of the major soft-
ware packages now include time serles programs (BMDP,
MIDAS, SAS, SPSS), increased use of these analytic tech-
niques In the coming years seems likely. Introductions to
time series analysis for social scienlists can be found in
Glass, Willson, and Gottman (1975), Hannan and Tuma
(1979), and McCleary et al. (1980).




GLOSSARY

ADDITIVE. A situation In which the best estimate of a dependent
varlable Is obtained by simply adding together the appropriately com-
puted effects of each of the independent variables. Additlvity Implies
the absence of Interactions. See also INTERACTION,

AGREEMENT. Agreement measures the extent to which two sets of
scores (e.g., scores obtained from two raters) are Identical. Agreement
Involves a more stringent matching of two varlables than does covari-
ation, which Implicitly allows one to change the mean (by adding a
constant) and/or to change the varlance (by multiplying by a constant)
for elther or both variables before checking the match,.

BIAS. The difference between the expected value of a statistic and the
population value it Is Intended to estimate. See EXPECTED VALUE.
BIASED ESTIMATOR. A statistic whose expected value is not equal to

the population value. See EXPECTED VALUE.

BIVARIATE NORMALITY. A particular form of distribution of two varlables
that has the traditional “bell" shape (bul not all bell-shaped distribu-
tions are normal). If plotted in three-dimensional space, with the
vertical axis showing the number of cases, the shape would be that of
a three-dimensional bell (if the variances on both variables were equal)
or a "flreman's hat" (If the varlances were unequal). When perfect bi-
variate normality obtains, the distribution of one variable Is normal for
each and every value of the other variable. See also NORMAL
DISTRIBUTION.

BRACKETING. The operation of combining categories or ranges of
values of a varlable so as to produce a small number of categories.
Sometimes referred to as “collapsing” or “grouping.”

CAPITALIZATION ON CHANCE. When one Is searching for a maximally
powerful prediction equation, chance fluctuations in a given sample
act to Increase the predictive power obtained; since data from another
sample from the same population will show different chance fluctu-
ations, the equation derlved for one sample Is likely to work less well
in any other sample.

CAUSAL MODEL. An abstract quantitative representation of real-world
dynamics (l.e., of the causal dependencles and other Interrelation-
ships among observed or hypothetical variables).

COMPLEX SAMPLE DESIGN. Any sample design that uses something
other than simple random selection. Complex sample designs include
multi-stage selection, and/or stratification, andl/or clustering. For In-
formation on the calculation of sampling errors of statistics from
complex designs, see note 9 in Appendix C.

COVARIATE. A variable that is used In an analysis to correct, adjust, or
modify the scores on a dependent variable before those scores are
related to one or more Independent varlables. For example, in an
analysis of how demographic factors (age, sex, education, etc.) relate
to wage rates, monthly earnings might first be adjusted to take
account of (L.e., remove effects attributable to) number of hours
worked, which in this example would be the covariate.

COVARIATION. Covariation measures the extent to which cases (e.g.,
persons) have the same relative positions on two variables. See also
AGREEMENT.

DEPENDENT VARIABLE. A variable which the analyst Is trylng to explain
in lerms of one or more Independent variables. The distinction
between dependent and independent variables is typically made on
theoretical grounds —in terms of a particular causal model or to test a
particular hypothesis. Synonym: criterlon varlable.

DESIGN MATRIX. A specification, expressed in matrix format, of the par-
ticular effects and combinations of effects that are to be considered in
an analysis.

DICHOTOMOUS VARIABLE. A variable that has only two categories.
Gender (male/female) Is an example. See also TWO-POINT SCALE.
DUMMY VARIABLE. A variable with just two categorles that reflects only
part of the information actually avallable In a more comprehensive
variable. For example, the four-category variable Reglon (Northeast,
Southeast, Central, West) could be the basis for a two-category
dummy variable that would distinguish Nartheast from all other
reglons. Dummy varlables often come In sets so as to reflect all of the
original Information. In our example, the four-category region variable
defines four dummy variables: (1) Northeast vs. all other; (2) Southeast
vs. all other; (3) Central vs. all other; and (4) West vs. all other. Alterna-
tive coding procedures (which are equivalent in terms of explanatory




power but which may produce more easlly Interpretable estimates) are
effect coding and orthogonal coefficlents.

EXPECTED VALUE. A theoretical average value of a statistic over an
Infinite number of samples from the same population.

HETEROSCEDASTICITY. The absence of homogenelty of variance. See
HOMOGENEITY OF VARIANCE.

HIERARCHICAL ANALYSIS. As used on page 26 of the Guide, a hiler-
archical analysis Is one In which Inclusion of a higher order inter-
actlon term Implies the Inclusion of all lower order terms. For example,
It the Interaction of two Independent varlables is included In an ex-
planatory model, then the main effects for both of those varlables are
also included in the model.

HOMOGENEITY OF VARIANCE. A situation In which the varlance on a
dependent variable |s the same (homogeneous) across all levels of the
independent variables. In analysis of variance applications, several
statistics are avallable for testing the homogeneity assumption (see
Kirk, 1968, page 81); in regression applications, a lack of homogeneity
can be detected by examination of residuals (see Draper and Smith,
1966, page 86). In either case, a variance-stabllizing transformation
may be helplul (see Kruskal, 1978, page 1052). Synonym: homosce-
dasticity. Antonym: heteroscedasticity.

HOMOSCEDASTICITY. See HOMOGENEITY OF VARIANCE.

INDEPENDENT VARIABLE, A variable used to explain a dependent
varlable. Synonyms: predictor variable, explanatory varlable. See also
DEPENDENT VARIABLE.

INTERACTION. A situation In which the direction and/or magnitude of
the relationship between two variables depends on (i.e., differs accord-
Ing to) the value of one or more other variables. When interaction Is
present, simple additive techniques are inappropriate; hence, inter-
action Is sometimes thought of as the absence of additivity. Syno-
nyms: nonadditivity, conditioning etfect, moderating effect, contin-
gency effect. See also PATTERN VARIABLE, PRODUCT VARIABLE.

INTERVAL SCALE. A scale conslsting of equal-sized units (dollars,
years, elc.). On an Interval scale the distance between any two posl-
tions Is of known size. Results from analytic techniques appropriate
for Interval scales will be affected by any non-linear transformation of
the scale values. See also SCALE OF MEASUREMENT.

INTERVENING VARIABLE. A variable which is postulated to be a pre-
dictor of one or more dependent varlables, and simultaneously pre-
dicted by one or more independent variables. Synonym: mediating
variable.

KURTOSIS. Kurtosis Indicates the exten! to which a distribution is more
peaked or flat-topped than a normal distribution.

LINEAR. The form of a relationship among variables such that when any
two variables are plotted, a stralght line results. A relationship Is
linear if the effect on a dependent variable of a change of one unit in
an independent variable |s the same for all possible such changes.

MATCHED SAMPLES. Two (or more) samples selected In such a way that
each case (e.g., person) In one sample Is malched ~i.e., Identical
within specified limits—on one or more preselected characteristics
with a corresponding case In the other sample. One example of
matched samples Is having repeated measures on the same in-
dividuals. Another example Is linking husbands and wives. Matched
samples are different from independent samples, where such case-by-
case matching on selected characteristics has not been assured.

MEASURE OF ASSOCIATION. A number (a statistic) whose magnitude
indicates the degree of correspondence — |.e., strength of relationship
—between two varlables. An example Is the Pearson product-moment
correlation coefficlent. Measures of association are different from sta-
tistical tests of assoclation (e.g., Pearson chi-square, F test) whose
primary purpose is to assess the probabllity that the strength of a rela-
tionship Is different from some preselected value (usually zero). See
also STATISTICAL MEASURE, STATISTICAL TEST.

MISSING DATA. information that Is not avallable for a particular case
(e.g., person) for which at least some other information Is avallable.
This can occur for a varlety of reasons, including a person's refusal or
Inability to answer a question, nonapplicability of a question, etc. For
useful discussions of how to overcome problems caused by missing
data In surveys see Hertel (1976) and Kim and Curry (1977).

MULTIVARIATE NORMALITY. The form of a distribution Involving more
than two varlables in which the distribution of one variable Is normal
for each and every combination of categorles of all other variables.
See Harrls (1975, page 231) for a discusslon of multivariate normality.
See also NORMAL DISTRIBUTION.

NOMINAL SCALE. A classification of cases which defines their equiva-
lence and non-equivalence, but Implies no quantitative relationships
or ordering among them. Analytic techniques appropriate for nomin-
ally scaled variables are not affected by any one-to-one transformation
of the numbers assigned to the classes. See also SCALE OF
MEASUREMENT.

NONADDITIVE. Not additive. See ADDITIVE, INTERACTION.

NORMAL DISTRIBUTION. A particular form for the distribution of a
variable which, when plotted, produces a “bell” shaped curve-—
symmelrical, rising smoothly from a small number of cases at both
extremes to a large number of cases in the middle. Not all symmetrical
bell-shaped distributions meet the definition of normality. See Hays
(1973, page 296).

NORMALITY. See NORMAL DISTRIBUTION.

ORDINAL SCALE. A classification of cases Iinto a set of ordered classes
such that each case Is considered equal to, greater than, or less than
every other case. Analytic techniques appropriate for ordinally scaled
variables are not affected by any monotonic transformation of the
numbers assigned to the classes. See a/so SCALE OF
MEASUREMENT.




OUTLYING CASE (QUTLIER). A case (e.g., person) whose score on a vari-
able deviates substantially from the mean (or other measure of central
tendency). Such cases can have disproportionately strong effects on
statistics.

PATTERN VARIABLE. A nominally scaled varlable whose categories
identify particular combinations (patterns) of scores on {wo or more
other variables. For example, a parly-by-gender pattern variable might
be developed by classifying people into the following six categories:
(1) Republican males, (2) Independent males, (3) Democratic males, (4)
Republican females, (5) Independent females, (6) Democratic females.
A pattern varlable can be used to Incorporate Interaction In muitl-
variate analysis.

PRODUCT VARIABLE. An Intervally scaled variable whose scores are
equal to the product obtained when the values of two other variables
are multiplied together. A product varlable can be used to Incorporate
certain types of interaction in multivariate analysis.

RANKS. The position of a particular case (e.g., person) relative to other
cases on adefined scale—as In “1si place,” "2nd place," etc. Note that
when the actual values of the numbers designating the relative posi-
tions (the ranks) are used In analysis they are being treated as an inter-
val scale, not an ordinal scale. See also INTERVAL SCALE, ORDINAL
SCALE.

SCALE OF MEASUREMENT. As used In this Guide, scale of measure-
ment refers to the nature of the assumptions one makes about the
properties of a variabls; in particular, whether that variable meets the
definition of nominal, ordinal, or Interval measurement. See also
NOMINAL SCALE, ORDINAL SCALE, INTERVAL SCALE.

SKEWNESS. Skewness Is a measure of lack of symmetry of a distribu-
tion.

STANDARDIZED COEFFICIENT. When an analysls Is performed on
variables that have been standardized so that they have varlances of
1.0, the estimates that result are known as standardized coefficlents;
for example, a regresslon run on original varlables produces un-
standardized regression coefficients known as b's, while a regression
run on standardized variables produces standardized regression coef-
ficlents known as betas, (In practice, both types of coelficlents can be
estimated from the original varlables.) Blalock (1987), Hargens (1978),
and Kim and Mueller (1976) provide useful discussions on the use of
standardized coefficients.
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STANDARDIZED VARIABLE. A varlable that has been transformed by
multiplication of all scores by a constant and/or by the addition of a
constant to all scores. Often these constants are selected so that the
transformed scores have a mean of zero and a variance (and standard
deviation) of 1.0.

STATISTICAL INDEPENDENCE. A complete lack of covariation between
variables; a lack of association between varlables. When used In anal-
ysis of variance or covariance, statistical independence between the
Independent variables Is sometimes referred to as a balanced design.

STATISTICAL MEASURE. A number (a statistic) whose size Indicates the
magnitude of some quantity of interest —e.g., the strength of a rela-
tionship, the amount of variation, the size of a difference, the level of
Income, etc. Examples Include means, varlances, correlation coeffi-
clents, and many others. Statistical measures are different from
statistical tests. See a/so STATISTICAL TEST.

STATISTICAL TEST. A number (a statistic) that can be used to assess the
probability that a stalistical measure deviates from some preselected
value (often zero) by no more than would be expected due to the opera-
tion of chance If the cases (e.g., persons) studied were randomly
selected from a larger population. Examples Include Pearson chi-
square, F test, t test, and many others. Statistical tests are different
from statistical measures. See also STATISTICAL MEASURE.

TRANSFORMATION. A change made to the scores of all cases (e.g., per-
sons) on a variable by the application of the same mathematical oper-
ation(s) to each score. (Common operations Include addition of a
constant, multiplication by a constant, taking logarithms, ranking,
bracketing, etc.) \

TWO-POINT SCALE. If each case Is classifled Into one of two categories
(e.g., yes/ino, male/female, dead/allve), the variable is a two-point scale.
For analytic purposes, two-point scales can be treated as nominal
scales, ordinal scales, or Interval scales.

WEIGHTED DATA. Welghts are applied when one wishes to adjust the
impact of cases (e.g., persons) in the analysls, e.g., to take account of
the number of population units that each case represents. In sample
surveys weights are most llkely to be used with data derlved from
sample designs having different selection rates or with data having
markedly different subgroup response rates.
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