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In this paper the concept of a homomorphism of a graph is
shown to be very closely related to that of the chromatic number of
a graph, On the basis of this observation a number of fundamental
results are obtained, which relate these two concepts to each other,
and establish an Interpoclation Theorem for a particular class of

homomorphisms, called complete,

The concept of 'a contraction of a graph is then shown to enjoy
a kind of dual relationship with that of homomorphism, On the basis
of this duality a few results are obtained, analogous to those which
are obtained for homomorphisms, which lead us directly to the state-

ment of the famous Conjecture of Hadwiger,

1, Notation and definitions. Let G be a graph; let V = V(G),

with elements u,v,w,..., be the set of points of G ; and let
E = E(G), elements of which are unordered pairs uv = [ u,v]

of distinct elements of V , be the set of lines of G, Let K be
n

the complete graph on the n points a8, .. ,2 . A graph G' \‘
n
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is a subgraph of G if V'C V and E'C E; in this case G 1is

said to be a supergraph of G',

A set S of points of G is independent if no two points in S

are adjacent, The point independence number QO (G) , is the largest

number of points in an independent set of G . A point and a line

cover each other if they are incident, The point covering number

e

@ (G) is the smallest number of points in a set 4§ which covers E .

A coloring of a graph G 1is an assignment of colors to the points
of G such that no two adjacent points have the same color. An
n-coloring of G 1is a coloring of G which uses n colors, i.e,,

a function T from V onto N = {1,2,...,n} such that whenever
. 1 . . .

u,v are adjacent, ur # vt. An n-coloring -+ is complete if for

every i,j, i # j, there exist two adjacent points wu,v such that

ut = 1 and vt = j. The chromatic number (G} is the smallest

number n for which G has an n-coloring. A graph G 1is critical
if for every proper subgraph G' of G, "¥(G') < YG); if WG = n

then G 1is n-critical,

1 . . . :
We use here, for conciseness of notation, the convention that u-
denotes the image of u under the function .



2, Homomorphisms. An elementary homomorphism of G

is the identification of one pair of non-adjacent points. A homomor-
phism of G is a sequence of elementary homomorphisms. Thus a
homomorphism (cf. Ore [ 9, p.83]) of a graph G onto the points
of a graph H 1is a function ¢ from V(G) onte V{(H) such that
whenever u,v are adjacentin G, ud , vd are a,dja.cen‘c2 in " H.
The image of G under the homomorphism ¢ 1is the graph Gé,
where V(Gp) = {up: ue V{(G)} and E(Gp) = {{ud,vd] : [ u,v]

e E(Q)} .

Two graphs G and H are isomorphic, written G ¥ H,
if there is a 1 -1 correspondence between their point sets which pre-
serves adjacency, i,e., if there exists a homomorphism ¢ from G
onto the points of H whichis 1-1, such that G = H. A
homomorphism ¢ of graph G is complete of

order n if Gp % K
n

Theorem 1. For every (complete) n-coloring + of a graph

G there exists a (complete) homomorphism ¢ of G onto Kn,

Note that it is not specified that every line of H be the "image"
under ¢ of aline of G.



and conversely,

Proof. If ut = i, let up = a, , and conversely.'

The next eight corollaries follow rather directly from this theorern;

their proofs are quite simple and are omitted.

Corollary 1,1. (Ore[ 9, p. 228]) If Y(G) = n then G has

a complete homomorphism of order n .

While this corollary asserts that every graph has at least one
complete homoemorphism, a given graph may have several complete
homomorphisms, of different orders, Figure 1 illustrates this

possibility; the graph G has complete homomorphisms of orders

2, 3, and 4,
1 Y2 U3 a a
2 3
. I I é4
> K
4] ’63 4
V4 v ¢,v6 az a 3,
2 AN f
— K K3
ao a 2 a1 33
1 2
¢52: Vs Vs, Vg > a 63 Vo Ve — 2 564 v, — 2
v —> a
vz,'\r‘l,v6 > a2 vl,v5 — a2 , V5 N a2.
v v —> a 6 3
3’ 4 3 VaiVy >a4

Figure 1.



Corollary 1,2, The smallest order of all complete homomorphisms

of a graph G is Y(G).

3
Corollary 1.3, (Hajos) For any homomorphismm ¢ of a graph

G, HG) < NGH) .

Corollary 1.4, For any graph G having p points and point

independence number

]

/B, < X(G) < p-B_ +1.

Proof, The right inequality follows from the preceding corollary;

the left inequality is noted in Ore [ 9, p. 225] and Berge [ 1, p. 37] .

Corollary 1.5, For any graph G and any independent set S

of points of G,

YAG) -1 < WG - 8) < WG) .

3See Ringel [ 10, p.27]



Corollary 1,6, (Dirac[ 2, p. 164]) For any critical graph G

and any independent set S of points of G,

YAG) -1 = VG - 9).

Corollary 1,7, For any graph G and any elementary homomorphism

e of G,

N(G) < UUGe) < NIG) +1.

Corellary 1.8, For any critical graph G and any elementary

homomorphism ¢ of G,

X(G) = YUGe) .



Let W(G) denote the maximum order of all complete homomorphisms
of G. While Corellary 1,2 asserts that X (G) is the minimum order
of all complete homoemorphisms of G, it remains an open question
to determine a decent description of lP(G) . The following result,

which extends Corollary 1.4, establishes a bound for IJ)(G). .

Theerem 2. For any graph G having p points and point

independence number B
o

(G < PG < p-p_+1.

Proof. Let LP(G) = t, and let $ be a complete homomorphism
of G onto Kt . Consider the partition of V (G) into sets Vl,VZ,
e Vt , such that ue Vi if and only if ud = a.i . Let S be any
independent set of G containing (30 points, and consider where
among the sets Vi the points in S lie. Three possibilities exist
for any set Vi : (l)"V,1 contains no points of S ,(2) Vi contains some

points of S and some points of V - S, or (3) V. contains only points
i

of S, Note however that at most one set Vi can contain only points



of S . It follows therefore that t -1 of these sets contain at least

one point which is not a pointof §, i.e.,

p-(t-1}) > g or,

l‘U (G)

)

- B +1.
P-B,

Corollary 2,1. For any graph G having point covering number o« ,
o

X(G) < YG) < a +1.

Proof. This follows immediately from a result of Gallai [ 4 ]

which states that p = @ + ﬁo .

Perhaps the most natural bound for l/j(G) , where G has ¢

lines, is the largest integer r such that



As one might expect, however, there are cases in which each

of the two bounds, r and p - ﬁo +1, gives a better estimate than

the other, as the examples in Figure 2 illustrate,

G H
Figure 2,

For G, p = 9, q = 8, and ﬁoz 8, hence r = 4, p_ﬁoJr.l
while ‘P(G) = 2, For H, p =10, g =9, and Bo = 5, hence

r = 4, p-BO+1 = 6, while lJ)(G) = 4,

We are now ready to state our principal result., Without the above
observations, in particular Corellary 1,7, the proof of this theorem

could be formidable,
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Theorem 3, (Homomorphism Interpolation Theorem) . For any
graph G and any integer n ,’X(G) < n < \P(G) , G has a complete

homoemorphism of order n.

Proof, Let LP(G) = t, and consider any complete hemomorphism
which maps G onto Kt . We know that ¢ can be expressed as a

product, say ¢ , of elementary homomorphisms.

1’62"" €

= = - G = = K ,
Let C‘}1 GEI’GZ G1€Z’ ’ "m Gm-lern t By
Corollary 1. 7 .we know that the chromatic number of G'+1 is at
i

most one greater than the chromatic nurnber of Gi . It follows
therefore that for every n ,'X(G) < n <t = q)(G) , there exists
at least one such graph, say Gi , Wwhose chromatic number is n.,
But by Corollary 1.1, Gi has.a complete homomorphism, say ¢Si ,

of order n. Hence G has a complete homomorphism e_,e¢

1772747

of order n .,

3. Contractions. An elementary contraction of a graph G is

the identification of one pair of adjacent points, A contractionof G
. . 4
is a sequence of elementary contractions. Thus a contraction of a

graph G onto a graph H 1is a function 8 from V(G) onto V{H)

4
cf. Ore[ 9, p. 85] , and Dirac [ 2, p.162]
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such that
(i) for ever"y peint ue V{(H), the graph G - (G- 6_1 (u) )
is a connected subgraph of G, and
(if) for every line uv e E(H), there is at leastone line in G

joining a point of 9-1(u) with one of G-l (v) .

Thus a graph G can be contracted ontoa graph H if G = H
or if H can be obtained from G . by shrinking each of a set of
disjoint connected subgraphs of G into a single point. If G = H,

the contraction is'said to be tiivial,

A contraction 6 of a graph G 1is complete of order n if

Ge % K .
The proofs of the results that follow make ample use of the following

observation. Let € be an elementary contraction of a line uv of

a graph G, and let ¢ be an elementary homomorphism of G - {uy)

such that ue = wve ; then G8 = (G - uv)e . Conversely, if ¢ 1is

an elementary homomorphism of a graph H which identifies non-

adjacent points u,v, and €& is an elementary contraction of the

line uv in the graph H U uv ; then He = {HU uv)e,
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On the basis of these observations, we can very easily prove

the following,

Theorem 4, For every (complete) contraction € of a graph G
there exists a (complete) homomorphism ¢ of a subgraph G' of
G such that GO = G'$ ; and conversely, for every (complete)
homomorphism ¢ of a graph G there exists a {complete) contraction

& of a supergraph G' of G such that G = G'8.

Theorem 5, For any graph G and any elementary contraction

& of G,

K(G) -1 < Y(GB) < YAG) + 1.

Proof. ILet G8 be obtained from G by contracting the line

uv , Consider the graph G' = G - uv . Clearly, (G = (G)
or X{G') = Y(G) - 1. Consider next the elementary homomorphism
¢ of G' which identifies points u and v . Clearly, G'¢e = G86,

and by Corollary 1. 7,%(G'¢) = X(G') or X(G'e) = X(G)+1.
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Thus, 'X,(G'e) =)Y(G8) can assume only one of the three values,

X(G) -1, X(G), or K(G)+1.

Corollary 5,1, If ‘X(G) = n, then for every k, 1 € k < n,

G has a contraction onto a graph H such that ’X_(H) = k.

Corollary 5.2. A graph G is critical if and only if for every

elementary contraction 8 of G, X(G8) = ?((G) -1,

There is an analogous interpolation theorem for contractions,

which is now immediately evident.

Corollary 5.3, (Contraction Interpoclation Theorem) If G has

a complete contraction of order n, then for everyk, 1 < k < n

G has a complete contraction of order k.,

Corollary 5. 4. KEvery non-critical graph G has a non-trivial

contraction onto a graph H such that Y(G) = A(H) .

It should be observed that the contraction in Corollary 5, 4
cannot be assumed to be an elementary contraction; the cycle of
length four has no elementary contraction onto a graph whose chromatic

number is two,
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Corollary 5. 5. (Dirac| 4, p.50]) Every non-critical graph G

has a contraction onto a critical graph H such that 'X(G) = X(H) .

It was undoubtedly this sequence of observations, Corollaries
5.1 - 5.5, which led Dirac|[ 4, p.44 ] to define a graph G to be
contraction-critical if for every non-trivial contraction 8 of G,
X(GB) < 'X(G) ; it follows from Corollary 5.5, of course, as was
shown by Dirac [ 4, p. 50 ], thatif G 1is contraction-critical then

G 1s critical,

In view of Corollary 1.1 and Corollaries 5,1 - 5,5 it is natural
to ask: For a given graph G, does G have a complete contraction
or order X(G) ? But this question is precisely that which is raised
in the celebrated conjecture of Hadwiger [ 71 : Every graph G

has a complete contraction of order Y(G).

Since it can be easily shown that a proof of this conjecture for
n = 5 would imply the truth of the famous Four Coler Conjecture,
it does not seem likely that Hadwiger's Conjecture will be settled

very quickly,
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While considerable effort has been directed towards Hadwiger's
Conjecture, most of the results that.have been obtained, for example
those contained in[ 9, p.233 ], [ 31, [4]),[51,[8 1], and[ 1],
provide sufficient conditions for the existence of a complete contraction
of a given order, most often of the orders four and five. It has not
yvet been established however whether the following weaker statement

holds,

Conjecture I. Every graph G has a complete contraction of

order X(G) -1,

One possible means of proving Hadwiger's Conjecture is suggested

by the following extension of Corellary 5.1,

Conjecture II, If X(G) =n, G # Kn’ then for every k ,

1 < k € n, G has a non-trivial contraction onte a graph H f{or

which (H) = k.

Corollary 5, 4 asserts that Conjecture II is true for non-critical
graphs, while Corollary 5.3 indicates that the conjecture is not
necessarily true for critical graphs. The following theorem, which
was first proved by Dirac [ 4 ] establishes a class of critical graphs
for which Conjecture Il is true; we are able to supply a proof of this

theorem which uses the basic notions and results on homomorphisms
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and contractions developed in this paper.

Theorem 6. (Dirac{ 4, p.50]) Let G be an n-critical graph,
G # Kn , having a point of degree n -1; then G has a nontrivial
contraction onto a graph H such that X (H) > n.

Proof. Let point ue V(G) have degree n -1. Let v,w be
two distinct points which are adjacent to u but not to each other.
Two such points must exist, or else G Y K . Consider the

n

elementary homomorphism ¢ of G which identifies points v

and w ; denote the resulting point by v'. From Corollary 1,8,
we conclude that X (G ) = n, and thus Ge contains an n-critical
subgraph, say G'. DBut since every point of an n-critical graph

must have degree greater than or equal to n -1 by Ore| 9, p.230] ,
and point u has degree n -2 in Ge , it follows that u ¢ V(G')
and thus that X{Ge - uv') = n . Hence if in Ge -uv' we identify
points u and v' by another elementary homomorphism ¢', we
obtain a graph H = (Ge - uv') ' such that, by Corollary 1,7,
either X(H) = n orX(H) = n+1. But H is a contraction of
G, proving the theorem,

Incidentally, if Theorem 6 could be proved for n-critical

graphs containing at least one point of degree n (instead of n -1},

then the Four Color Conjecture would be settled in the affirmative,
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