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Preface

Some years ago, in rebellion against the restrictive assumptions of con-
ventional multivariate techniques and the cumbersome inconvenience of ransack-—
ing sets of data in other ways, we produced a computer program entitled The Au-
tomatic Interaction Qetector.l This program simulated what researchers had been
doing with data for many years but with prestated strategy and in a reproducible
way.

The Structure-Search program described here, termed AID3, is a new and
elaborated version of the original AID algorithm. This manual is intended as a
technical guide to using the program. In order to make the documentation more
complete, parts of the origimal AID monograph, '"The Detection of Interaction
Effects," have been incorporated into the text.

This version of AID3 was designed and implemented by the authors in coop-
eration with other members of ISR's Survey Research Center Computer Support
Group. The advice and help of Judith Rattenbury, Neal Van Eck, Laura Klem,
Duane Thomas and Robert Messenger are especially acknowledged. Tecla Schrader
aided in developing the final program by testing and retesting many combina-
tions of options on several data sets. William Haney provided valuable edito-
rial suggestions. Joan Brinser cleared up the worst obscurities. Maryon Wells,
Tracie Brooks, Nancy Mayer and Alice Sano helped with the typing. Priscilla
Hildebrandt and Ellen Bronson typed the completed manuscript.

The financial support of the National Science Foundation and the Shell

01l Company is gratefully acknowledged. Mr. V. Hwang, Mr. J. Viladas and Mr. A.

lThe support of the National Science Foundation for development of both
the original "AID" program and the new AID3 documented here is gratefully ac-
knowledged.
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Armitage provided valuable suggestions.

The data computation upon which this paper is based employed the OSIRIS
computer sgof tware system, which was jointly developed by the component Centers of
the Institute for Social Research, The University of Michigan, using funds from

the NSF, the Inter-university Consortium for Political Research and other sources.

viii




I
Introduction to the Program

1.1 Program Overview

In many sociel science research situations the problem in the data analy-
sig is to determine which of the wvariables are related to the phenomenon in ques-
tion (under what conditions and through what intervening processes) but may not
necessarily involve the exact testing of specific hypotheses.

Data analysis consists of searching for the best model, combining theory
and examination of data in the process, and then assessing the best model (or
two) by well-known processes of statistical inference. The pure theory of sta-
tistical inference requires that the second step be done on a fresh set of data,
not thogse used to select the best model. It also assumes that the model is prop-
erly specified. The choice among several competing and probably misspecified
models creates unsolved problems in statistics.

The present program focuses on the first step-—the searching of data fox
an optimal model. Theory is involved in the selection, explanatory variables,
their hierarchical ranking, and in the interpretation of the results. The like-
lihood that another sample would give the same results can be estimated by look-
ing at the competitive possibilities at each split, but the probability of rep-
licating the full prccess is usually negligible, and a test of the final results
requires a fresh, independent set of data. Hence no significance tests are pro—
vided in this program--they are inappropriate.l

The general principle of the AID3 program i1s an application of a prestated,
if complex, strategy simulating the procedures of a good researcher in searching

for the predictors that increase his power to account for the varlance of the

lSee J. Morgan and F. Andrews (1973).



dependent variable. Thus the basic principle of least squares is followed, and
the focus is on power in reducing error, i.e., on importance rather than on sig-
nificance. 1In place of restrictive assumptions, reliance is on a prearranged
procedure which starts with the most stable and dependable finding (division of
the data set on that predictor which reduces the variance of the dependent var-
iable the most) and works down to less and less dependable and powerful findings
on smaller and smaller subgroups.

The data-model to which the procedure is applicable may be termed a "sam—

ple survey model," in which values of a set of predictors Xl, X

g8 e Xp, and a
dependent wvariable Y, have been obtained over a set of observations, or units of
analysis, Ul; UZ’ e Ua - Un . A weight, Wa’ may also be established for Uu

if the sample is not representative and self-weighting, or if one observation

is considered to be more reliable than another. Data may be considered "miss-

ing" or undefined on any of the X .- In particular, this analysis situation is
defined to be one in which the Xi are a mixture of nominal and/or ordinal scales
(or code intervals of an equal-interval scale) and Y is a continuous, or equal-
interval scale. The X, variables may consist of a mixture of "independent var-
iables" and alsoc "specifiers' (conditions) and "elaborators'" (intervening vari-
ables).

The question "what dichotomous split on which single predictor variable
will give us a maximum improvement in our ability to predict values of the de-
pendent variable?" embedded in an lterative scheme 18 the basis for the algo-
rithm used in this program. The program divides the sample, through a series of
binary splits, into a mutually exclusive series of subgroups. Every observation
is a member of exactly one of these subgroups. They are chosen so that at each
step in the procedure, the two new means account for more of the total sum of
squares (reduce the predictive error more) than the means of any other pair of
subgroups.

A major advantage of this procedure is the transparency of the process
and the results. At each decilsion point, the printed output allows one to ex-
amine all the alternative divisions of the data set. If several predictors were
similar in importance, clearly another set of data might have produced different
results. At the end of the process, what one has is a set of subgroups whose
definition (pedigree) is clearly and easily defined by the process by which they
were isolated and whose characteristics (mean and variance of the dependent var—
iable) are simple statistics.

It is always easy to explain any process by describing it in relation to

something else. But this process 1s not like stepwise regression, factor analy-




sis , or even analysis of wvariance. The only thing with which it is really com-
parable is the activity of a researcher investigating a body of data with a ba-
sic theory about what variables are important. Stepwise regression adds predic-
tors, but every one has its effect measured over the whole data set, This new
procedure measures the effect of each predictor on each subgroup. Variance an-
alysis asks how much of the variance is accounted for by each predictor and by
each interaction effect, but it insists that effects, main or interaction, are
to be measured over the whole sample. It thus assumes what is often not true.
In any case, variance amnalysis runs intoc statistical problems with survey data
which are not orthogonal since a factorial design with equal numbers in all the
n—-dimensioned subcells is not possible. The basic additivity of the variances
does not hold anyway with such real data.

The variance analysis in the present program is a sequential one-way an-—
alysis of wvariance that is simple, robust, and easy to understand. Factor an—
alysls or smallest-space analyses ignore any dependent variable and merely at—
tempt to reduce & set of things to a smaller set. Factor analysis serves a
different purpose and may be necessary to develop a dependent or criterion var-
iable for analysis. With the kind of flexibility in the use of predictors pro-
vided by the present program, however, the utility gained by reducing the number
or dimensionality of predictors is questionable, particularly since those methods
ignore the dependent variable and make a number of unnecessary assumptions of
measurability, linearity and additivity. Indeed, one of the things that comes
out of analysis using the present program is a new set of complex wvarilables (de-
fining subgroups) which have high explanatory power, and should lead to improved
theory as well,

Finally, multiple discriminant functions, canonical correlation, and other
"multivariate" procédures all impose restrictive assumptions, e.g. additivity,
linearity. Of course, once thé best set of non-linearities and non-additivities
is decided upon, a linear model can be designed to include them, and fit to a
fresh set of data for testing.

A warning to potential users of this program: Data sets with a thousand
cases or more are necessary; Ootherwise the power of the search processes must be
restricted drastically or those processes will carry cne intc a never-never land
of idiosyncratic results. A well-behaved dependent variable without extreme
cases or severe bimodalities is also assumed., A dichotomous dependent 'variable"
is uwsable if it takes one of 1ts values more than 20 and less than 80 percent of
the time. The predictors should be classifications, where each of the classes is

in a single dimension; otherwise one really should make dichotomies out of each



of the categories. Finally, some theory must be applied, if only in the selec-
tion of the predictors. If all of them are at the same level in the causal pro-
cess, they can be used simultaneously; but if they are at different levels, a

more complex strategy must be used.

1.2 Output Illustration for the Original Algorithm

The following results, contrived, but realistic, will illustrate the basic
output of the procedure. Suppose that Age, Race, Education, Occupation, and
Length of Time in Present Job, are used in an znalysis to predict Income. Age
is an ordered series of categoriles represented by the numbers [1,2, ...,6].

Race is coded [l or 2], Occupation is coded [1,2, ..., 5], Education is coded
il,2,3], and Time on Job is coded [1,2, ..., 5]. We find the following mutu-
ally exclusive groups whose means may be used to predict the income of cbserva-

tions falling into that group:

Mean

Group Type N Tncome g
12 Age 46-65, white, college 8 $8777 $773
13 Age under 45, white, college 12 6005 812
10 Age 36-65, white, no college,

nonlaborer 24 5794 487

11 Age under 35, white, no college,
nonlaborer 16 3752 559

9 Age under 65, white, ne college,
laborer 10 2750 250
Age under 65, nonwhite 10 2010 10
3 Age over 65 10 1005 5
Total 90 4434 2263

A one-way analysis of variance over these seven groups would account for 95 per
cent of the variation in income.
These results are arrived at by the following procedure, as represented by

the tree of binary splits:




(12) *
Age 46-65
N = 8
4-5 Y = 8777
(5) .
College (13) Age *
N = 20 under 45 (10) *
= 7114 1-3 N =12 lAge 36-65
3 Y = 6005 N = 24
5 3-5[Y =
(8) Non- (11) %
1 laborer Age under 33
N = 40 N = 16
¥ = 4977 Y = 3752
1-2
{9) *
Laborer
N = 10

(3) Age | *

over 65
N = 10
Y = 100

When the total sample (group 1) is examined, the maximum reduction in the unex-

plained sum of squares is obtained by splitting the sample into two new groups,

"age under 65" (classes 1-5 on age) and "

age 65 and over" (those coded 6 on age).
Note that each group may contain some noanwhites and varying education and occu-
pation groups. Group 2, the "under-65" people are then split into "white" and
"nonwhite." Note that group 5, the 'monwhites" are all under age 65. Similarly
the "white, uader age 65" group 1s further divided, into college and non-college
individuals, etc. A group which can no longer be split is marked with an aster-
isk and constitutes one of the above final groups. The variable "Length of Time
in Present Job" has not been used. At each step there existed another variable
which proved more useful in explaining the variance remaining in that particular
group.

The predicted value Ya for any individual o 1s the mean, Y of his final

i)
group. Thus Y = ?& + £, where € is an error term. Prediction of income on the
basis of age, education, occupation and race would provide a considerable reduc-
tion in error. Variables which "work" are, of course, the most logical candidates

for inclusion in a theoretical framework.



1.3 Capabilities and Differences from Previous Versions

The ATID3 program is a generalized data analysis system, based on modifica-
tions of the original AID algorithm, and incorporating highly flexible capabil-
ities for selecting subsets of variables and analyzing segments of the user's
data file. It provides capabilities for controlling the way in which the vari-
ables are used in the automated sequential analysis, and provides for improved
user intervention in this sequential partitioning process.

The analysis of variance model implemented in the original AID algorithm
has been extended to include a covaxiate. Thus, an analysis can now be set up
to maximize differences in group means, differences in the slopes of the regres-
slon of the dependent variable om the covariate, or differences in explained
sume of squares due to regression (means and slopes). The sequential partition-
Ing process of the procedure has undergone extensive modifications to make it
more sophlsticated in its search. The algorithm can now be set to examine the
explanatory power of several sequences of prospective partitions before the
choice ¢of the first one is actually made. Thus, present explanatory power can
be sacrificed temporarily in favor of even greater potential gains in subsequent
partitions.

User controls over the behavior of the algorithm have been significantly
improved, facilitating the exploration of interesting findings revealed in the
course of the analysis. The analyst can request that the automateq search pro-
cedure gtart from a particular point in a pre-specified partial tree structure.
He can specify that certain predictors be used first in the partitioning process,
or he can insist that statistics be computed for certain predictors, but that
they not be actually used as the basis for a partition. The entire set of pre-
dictors can even be replaced in successive stages of a run. The analyst can use
these capabilities to impose limitations on the partitioning process that are
consistent with the kinds of causal explanatory assumptions he 1s willing to
make about his data.

A further improvement is the capability to compute the potential explana-
tory power contained in the entire subset of predictors chosen for the analysis.

"usefulness'

This "configuration' rating is the upper bound of the statistical
of this set of predictors, and represents the amount of variation that could be
explained if the predictors were to be used in a model containing all possible

interaction terms and main effects. It is essentially an analysis of varianée

using all the subgroup means in a k-way table if there are k different predic-

tors.

The type of input acceptable to the program is basically the same as that




acceptable to the original version, but with two important restrictions lifted.
First, extremely powerful recoding and variable generation capabilities have now
been provided. Thus, it is no longer necessary for the user to make expensive
and time—consuming preliminary runs on other programs to recode or alter his in-
put variables. He may even alter the coding scheme of his dependent variable
and predictors in the course of one run, or he may generate new forms of any of
his input variables. Secondly, this capability is used to provide an extremely
powerful facility for selecting subsets of the input file for analysis, and for
repeating analyses over several such groups. In addition, this recoding facil-
ity provides improved user control over the handling of missing data, either by
assignment, exclusion, or randomization.

Improvements have also been made in the types of output supplied to the
analyst, Information formerly scattered over many pages has been gathered to-
gether in more concise tabular form. The analyst may choose to receive an out-~
put file containing any or all of his input and generated variables as well as
predicted values and residuals for each stage of his analysis.

It has been our experience that it takes time to examine the output, re-
think over strategy, and that batch processing rather than an interactive mode
is satisfactory. Indeed, the general principle of a prestated strategy rather
than artistic ad hoc revisions of strategy at each local decision point appeals
to us.

Two types of'program operation modes are available: parameter definition
(or redefinition), and execution. Three types of program functions can be re-
quested in any sequence desired by the user. These are data input, computation,
and output. A "run" on the program (to use computer batch-processing terminol-
ogy) consists of an ordered sequence of parameter definitions and requests for
execution of functions using then current values of the parameters. This series
of macro instructions is executed in the order defined by the analyst in submit-
ting his contrel informatioﬁ stream to the computer., After the executicn of
each function a query is made by the program to this control stream for informa-
tion as to what function is to be performed next and what parameters are to be

re-defined.



1
Analysis Strategy

2.1 Basic Procedure

The AID3 algorithm uses a repeated one-way analysis of variance technique
to explain as much of the variance of a dependent varilable as possible.

The simple conceptualizations given below should aid one's understanding
of the program. If one thinks of the error in predicting the value of some var-—
iable in a small data set and its progressive reduction by knowing things about

each case, the following holds:

(1) If one knows absolutely nothing about the variable, not even the sign,
and can only predict O:

Error variance 1s the sum of squares of the Y's = LY?

(2) 1If one knows only- the overall average, one predicts that for each
case:

— 2 _
Error variamce is Z(¥-Y)2 = ry2- jﬁzl'= I¥¢ - NY?

(3) If one knows the average (Y) for each of two groups, and for each
case knows which group it is dinm:

: - 2 _ N w2 20 V2 o 2 _ N V2w v2
Error variance is: ZYl NlYl+ZY2 N2Y2 Y NlYl N2Y2

which is lesgs than (2) by:

v T2 _ vl
N1Y1+ NZYZ NY

Put another way, with one overall average, one explains NY2 of the vari-
ance. With averages for two groups, one explains Nl§§ + N2§§ of the variance.

Clearly the two group means must be different and the two groups not too
different in size (both of some appreciable size) for maximum further reduction
in errer by knowing in which group individuals belong.

The present version of the program allows reduction in error not solely by
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using means but alternatively by using simple regressions for each group. By
knowing which of two groups a case is in, one can dc better if the two have ei-
ther different means or different regression slopes (on the single covariate al-
lowed) or both. The program allows either one or both sources of error reduc-
cion to be applied. (See Section 2.3 below.)

On the continuum between testing one pre-specified model (set of hypothe-
ses) and completely flexible artistic data-searching, the approaches facilitated
by this program fall in the middle. The program operates sequentially, imposes
a minimum of assumptions on the data (selection of predictors, and the mode of
classifying those with much detail), does a great deal of searching; but it does
pre—specify the strategy of the search process so that it is reproducible. A re-
run using the same specification for both the dependent variable and the predic--
tors on the same data set will produce identical results. A similar run on an-
other data set will probably produce something similar, at least for the first
few steps.

The most common restrictive assumptions made by statisticians for easing
‘the computational and analytical burden are thoseé of linearity and additivity.
With large data sets these restrictions are unnecessary. The use of categoricalv
predictors representing subclasses of predictors (dummy variables) with multiple
regression can deal with nonlinearities in the relationshlps qulte adequately;
hence it is the additivity assumption that is a problem. Additivity means the
absence of any interaction effects, the effects of Xl on Y belng pervasive and
independent of the levels of any other factor. It is cumbersome to handle in-
teractions using regression. Either one runs separate regressions for subgroups,
ending up with no overall rélationships, or one introduces "interaction terms"
which are themselves restrictive and limited. Suppose there are twe predictors,
each with three levels. Any one of the nine combinations of the two may reveal
some non-additive effects, higher if the two are complements or lower if they
are substitutes, Should one introduce separate terms (dummy variables) for each
possibility, omitting the main effects, or what? If one omitted one level of
each of the predictors in order to use usual regression programs (since the mem-~
bership in a third class is a linear function of membership in the other two —-
if you are in neither of them you must be in the third), then the cross-product
terms would specify only four of the nine combinations, which particular four
depending on which level of each predictor was omitted! The goal is not ex-
hausting all the information in the predictors but discovering how they work.

Once one allows for higher-order interactions, the possibility of intro-

ducing variables for all of them in a simultaneous analysis dims rapidly. The
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real world, however, is full of examples of higher-order interaction effects.
There are things which are substitutes for one another--any one of several hand-
icaps can make a family poor. And there are some results which require that a
combination of things be right. An interesting, if somewhat usual, example of
this is the result of an analysis of time spent on do-it-yourself activities,
shown in Figure 1. It indicates that any one of several things inhibit such ac-
tivity or, put another way, only a combination of several favorable factors leads
to a substantial amount of such activity. Read the right-hand boxes down the
page.

There is so much confusion between interaction effects and intercorrela-
tion among predictors that it may pay to distinguish them.l Multiple regression
handles the problem of intercorrelation among predictors, so long as it is not
too extreme. When the predictors are categorical, it simply means that one does
not have a factorial design, i.e., equal numbers of cases for each of the pos-
sible combinations. The weighted means in any one dimension, as a result, re-—
flect both the effect of that dimension and the hidden spurious effects of other
factors disproportionately represented in the groups. In Figure 2 the intercor-
relation shows up in the distribution of cases (Part A) and in the weighted
means of Part B. With reasonably small errors around the subgroup means given
in Part B, a dummy-variable regression will uncover the $4,000 education differ-
ential and the $2,000 age differential using only the intercorrelation data from
Part A and the weighted means outside Part B. The investigator will then report
that the negative correlation between age and education had hidden part of the
effects of each—-the simple weighted means differing by less than the true ef-
fects, i-e., by only $2,800 for education and $400 for age.

But 1f there is, in addition to the direct effects, an added $1,000 a year
bonus to people with both education and experience (as showh in Part C), a re-
gression would indicate somewhat larger effects of both age and education. Add-
ing a cross-product term would locate the $1,000 interaction effect, but only if
one happened to define it in the one way out of four possibilities that hit the

correct corner. And with more complex combinations, and/or with more levels, the

lSee also Appendix VII, James N. Morgan and John A. Sonquist, "Problems in
the Analysis of Survey Data, and a Proposal," Journal of the American Statistical
Association 58 (June 1963), 415-435, reprinted from Sonquist and Morgan, The De-
tection of Interaction Effects, Institute for Social Research, The Unilversity of
Michigan, Ann Arbor, Michigan, L964.

Or see John B. Lansing and James N. Morgan, Economic Survey Methods, Institute
for Social Research, The University of Michigan, Ann Arbor, Michigan, 1971.
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Figure 1

Hours of Home Production Done in 1964 by Heads of Families and Wives*
(For 2214 families)

Overall
Average

205 hours

14% of
cases

Married
Couples

249

Single Men
and Women

79 |
574 cases
16

Do Not Live in Live in
Single-family Single-family
Structures Structures
157 275
366 cases
54% 4%

Smaller Families
(2-6 People)

264
TI8% cases

Larger Families
(7-8 People)

Family Heads with
Less Education
(0-8 Grades)

Family Heads with
More Education
(9 Grades or More)

161 531
28 cases
2% 1%
*Home production is defined
as unpald work other than Do Not Live in Live in Rural
regular housework, minus Rural Areas Areas
volunteer work, and minus 292 861
courses and lessons. 76 cases
2
Youngest Child Youngest Child
is under 2 is 2-8
MIR 175 370 1168
I cases 1% cages
Source: J. Morgan, I. Sirageldin and N. Baerwaldt, Productive Americans, Survey

Research Center, Ann Arbor, Michigan, 1965, p 128.
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A Simple Example of Intercorrelation and Interaction

¢

Part A.
Youth
0ld
Part B.
Youth
01d
Part C.
Youth
0ld

*
All means outside boxes
are welghted.

Uneducated Educated
10 40 50
Intercorrelation
(Negative}
40 10 50
50 50 100Z of Sample
Uneducated  Educated "
Means
53000 $7000 $6200 . No
Interaction
" Effect
(But Weighted
Means are
Affected by
55000 $9000 $5800 Intercorrelation)
$4600 57400 $6000
Uneducated Educated
$3000 $7000 $6200
Interaction
Effect
Added
$5000 $10,000 $6000
$4600 §7600 $6100
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likelihood of finding interactions rapidly diminishes.

If one took the weighted means, one factor at a time, and used them to pre-
dict the interior of the table, one would see the large positive deviation of
actual from expected in Cthe lower right corner.

How one describes an ilnteraction effect is always arbitrary. In the pre-
sent example one might say that the effect of education on earnings depended on
one's age, or that the effect of age on earnings depended on education. Either
may be true, but choice of a statement implying causal directlon must be based
on other considerations, not the data themselves.

The crucial point is that not only are main effects not necessarily the
same or even present in all parts of the sample (or population), but interaction
effects themselves may be of various complex kinds affecting only some subgroups.

The theoretical importance of these considerations should be kept in mind.
Many theories of human behavior, whether from economilcs, psychology, sociology
or the new political science, deal with behavior of those who have a choice to
make, i.e., not dominated by other less interesting forces or constraints. Hy-
potheses are built on what affects those at the margin, to use the economist's
phrase. But if many people are not free to make choices or are dominated by oth-
er forces (which may not change over time, or be subject to policy, or even be
interesting), then the data may show that the overall effect of some important
theoretical variable is insignificant, when in fact it is quite powerful for the
relevant subgroup—--something that this program will reveal.

If this program handles non-additivities better than regression, does it han-
dle intercorrelations among predictors as well? The answer is that it handles
them differently. 1In regression a simultaneous estimate is made of the effects
of each of two correlated predictors, each effect adjusted for the fact that
those in a class on one predictor are distributed differently (from the rest of
the sample) over classes of the other predictor. The nature of this simultan-
eous solution can be seen best when it is described as an 1lterative adjustment
process.l

In contrast, the AID program divides the sample on the most powerful of
two correlated predictors, and searches the two subgroups to see whether the
other still matters, If the two are largely correlated and have similar effects
on the dependent variable, then the second usually loses most or all of its pow-

er and may well never appear in the branching diagram. Since rather few groups

1See F. Andrews, J. Sonquist and J., Morgan, Multiple Classification Analy-
sis, Ann Arbor, Survey Research Center.
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can exhaust the explanatory power of any one predictor, the pre-emption by one
predictor is often dramatic. But this merely dramatizes the problem of inter-
correlation. These may be situations where one wants a simultaneous estimation--—
then a regression model is required.

The program formalizes and makes explicit the exploratory nature of one's
analysis so that it can be judged, repeated, and tested on other data sets. Most
behavioral-science investigators have only a rudimentary theory, particularly in
terms of the measured variables, as distinct from the theoretical constructs they
hopefully represent. Even those who start with one model and test it usually end
up testing several other altermatives, frequently by segregating subgroups for
separate analysis.

To use the present program one must specify a dependent variable, a set of
predicting characteristics, and some strategy parameters, which are discussed be-
low. It examines the full data set using each predictor, and with each searches
for the best single division according to that predictor. '"Best" means the lar-
gest reduction in predictive error from knowing to which of two subgroups on that
predictor each case belongs (and the means or simple regressions of those sub-
groups). The criterlon 1s ome of importance in reducing error, not statistical
significance.

Where a predictor has a natural order (e.g., age) that order can be pre-
served, or the order can be left unspecified, in which case the categories are
reordered according to the level of the subgroup means on the dependent variable.
In either case, with k subgroups, there are k-1 pogsible ways to form two groups,
and the division that makes the largest contribution to error reduction ("between
sum of squares'") is retained;l Among these best—for-that-predictor splits, the
one (over all the predictors) which reduces the error variance the most is used
to divide the data set into two groups.

Needless to say, the same predictor may be used again to divide the sample
into several subgroups. Indeed, if there is one extremely powerful predictor, it
may dominate the process and it suggests turning to a covariance search process.

A brief description of the splitting process is as follows:

(4) Choose the unsplit group L which has the largest sum of squares

N, .,
ssp =) (Y - YT
a=1

The total input sample is the first group. i.e. L=1.

1The firet versus the k-1 others, the first two versus the k-2 others, etc.
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{B) TFor éach predictor Pi find that division of the classes in Pi that
provides the largest reéduction in the unexplained sum of squares.
That is, split L (the "parent" group) into 2 non-overlapping groups
{or "children") L1 and L2 so as to maximize the between sum of squares.

For example, in a means analysis:

= Y2 y2 ~ N.Y2
BSSy = Rpa¥igt Mot MY
where NL1+NL2=NL’ and NLl’ NL2 > NMIN; NMIN is a minimum group size re-

quirement (see (2) below). Note that if the order of a predictor with
k classes is maintained only k-1 possible splits are checked. If not,
one of k! possible orders is selected first {(the one in order according
to the mean of the dependent variable), then k-1 computations made.

To avoid undue chances for idiosyncratic findings, it is wise to main-
tain the order of each predictor, or, if that is impossible, to con-

vert it to a set of dichotomies.

{C) Select that predictor Pj such that BSSj > BSSi , j#i, and if BSSj >

pessl split L into the 2 groups L1 and L2 defined for the predictor

Pj. The parameter Pe is an eligibility criterion (see (1) below). TIf
BSSj < peSSl

(D) Return to step (A).

then L is deemed a final group and is not split.

The process stops when one or more of the several criteria below are met:

(1) The marginal (added) reduction in error variance if a split occurred
would be less than some prestated fraction of the original vardance
around the mean; often the value .006 (0.6%) is chosen. This is the

best criterion to use.

(2) 1f a split on a group were to occur, one or both would have fewer than
some prestated number of cases (e.g., 25) and the mean would be unre-
liable. This is usually a dangerous rule, since (a) the least squares
criterion being used is very sensitive to extreme cases, (b) cases in
subgroups can appear extreme even if they don't in the full éample,
and (c) the program can alert the researcher to their presence (and
damage) by isolating a group of one or two cases that account for a

substantial fraction of the variance if this criterion is not used.l

(3) The total number of splits has already reached some prestated maximum

lSee Section 2.8 for one method of treating extreme cases.
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(e.g., 30), meaning that there are already that many final groups plus
one and more than twice that many groups altogether. This is a useful
secondary safeguard to prevent gemnerating too many groups through in-
advertence, e.g., in setting the first, main criterion too low. These
criteria insure that the process stops before unreliable reduction in

error variance gccurs.

It should be obvious that if there are M different predictors of K subclas-
ses each, even if all are maintained in some logical order, each split looks at
M (K-1) possibilities and by the time twenty-five such splits have been declded
upon, the program has selected from among 25M (K-1). With twenty predictors of
ten classes each, this is 4,500. If any reordering of scales is allowed, the
number explodes. Hence there is no point asking about statistical significance
or degrees of freedom.

What can we say about the stability of the process? Each division selected
is on the basis of an estimated "“between sum of squares,' a variance, as compared
with similar measures for competing alternatives, The sampling stability (like-
lihood of producing the identical split on another sample) is clearly dependent
on the sampling variance of the difference between the best reduction in variance
and the reduction in wvariance cccasioned by the use of each cf the various com-
peting predictors, which depends on differences between pairs of variances and
their sampling errors. And of coursé the probability of getting the same se-
quence of splits is the product of the probability of getting the first (one mi-
nus the probability of getting any of the others) times the probability of making
the same second split, etc., a product which diminishes in value rapidly. Of
course it is possible to end up with the same breakdown of a sample with splits
in different orders, i.e., one can split first on age and then on education, or
the reverse, and end with the same final groups.

The examination of the predictors for competing alternative splits (two or
more predictors where splits reduce the error variance about the same amount) for
each subgroup provides a clear picture of the amount of intercoxrrelation among
the predictors. If there are two competing predictors, and a split is made on
one of them and the other retains no explanatory power over either of the result-
ing two groups, one sees clearly that they are alternative explanations and prob-
ably highly correlated with one another. Instead of a simultaneous process of
"dividing up the credit" among correlated predictors, the sequential process used
here selects one and reports that having once taken account of it (even in a sin-
gle binary split) the other doesn't matter any more for that group. Once again,

as with the extreme case problem, the results are transparent and face the re-~
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searcher with his problems, rather than burying them in complex statistics.
Researchers accustomed to using numerical variables are often concerned
with the use of binary divisions and with the posgible loss of explanatoxry power
when numerical predictors are converted into a few subclasses. The example below
shows the potential loss of power from .grouping a numerical predictor variable.
It should be noted that when a predictor is used in several splits, dividing the
sample intc three or four subclasses on that dimension, the results are even bet-—
ter than in Table 1 because one has used only the best of the information. But
even if one used all the classes aQailable, as in dummy variable regression, it
1s clear that the losses in power are minimal, if the relation is actually linear.
If the relationship is not linear, then one often does better by grouping a nu-
merical variable in terms of explanatory power, to say nothing of the fact that

one learns more about the real world.
Table 1

Percent of the Total Possible Explanatory Power Achieved
By Using Egqual Sized Subgroups Instead of Regressionl

Number gizgérm Triangular Right Bimodal Right
of Distribution Distribution Triangle Triangle
Subgroups () (A () D
2 .15% .67 .67 . .89
3 .89 - - -
4 .93 .89 .91 .96
5 .96 - - -
6 .97 .95 .96 .98
7 .98 - - -
8 .98 .97 .98 .99
10 .99 .98 .99 .99

Source: Graham Kalton, A Technique for Choosing the Number of Alternative Re-
sponse Categories to Provide in Order to Coerce An Individual's Position
on a Continuum (Memos of Nov. 7, 1960, Feb. 10, 1967 and March 10, 1967),
Sampling Section, Institute for Social Research, Ann Arbor, Michigan.

lIf a regression gives r2 and the squared cgrrelation ratio using K sub-
groups of that predictor is n2, the table gives %7. A useful approximatien is

2
n
is;‘?":l_%i'z'.




19

In fact, though, the comparison is not fair since the search process uses
up many more degrees of freedom. A branching diagram with a dozen final groups
usually accounts for as much of the variance of the dependent variable as a dummy-
variable regression with sixty or more dummy variables (70 or more sub-classes of
predictors).

Perhaps the most striking possible result from the program is the firm con-
clusicn that some particular predictor may not matter. With an additive model,
one is never sure about the possibility that a factor might matter for some sub-
group of the population. But if that factor cannot account for any substantial
fraction of the variance of the dependent variable over the whole sample or over

any_of the various different but homogeneous subgroups created by the program,

then one can confidently dismiss it.

Results are independent of the order in which predictors are introduced,
in spite of the sequential nature of the decisions made, but they are of course
dependent on which predictors are used. Since there are often predictors which
can affect other predictors but camnot be affected by them, the program allows
for conducting the analysis in stages. One can Introduce a set of basic hack-
ground factors, remove their influence by calculating for each individual his de-
viation from the average of the final group to which he belongs, reassemble the
full data set and analyze these residuals using another set of predictors. Since
this process assumes no interaction between stages, one may want to reintroduce
some of the initial predictors at the second stage. For instance, age, race, or
education may be used in the first stage as background but can as well be used in
the second stage. For example, the influence of moving to the city may depend on
education.

It must be kept in mind that analysis of residuals, which is also done with
ordinary regression, is not usually the best way to estimate the marginal or added
power of certain predictors. The influence of the other things has been removed
only from the dependent variable. True partial correlation requires removing
their influence also from the predictor in question. (There also exists a concept
called "part correlation' where the influence of cther predictors 1is removed from
the predictor in question, but not from the dependent variable.) It would be
possible to derive two sets of resliduals, using the present program, &éd correlate
them as the tightest fair test of a nonspurious correlation.

The present program also provides evidence for marginal contributions of a
predictor in the sense of their added effect on groups already freed from most of
the effects of predictors already used to create them and free from the assump-

tion of partial correlation coefficients that the marginal contribution is perva—
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sive and universal, rather than restricted to a sub-part of the population. Or
it provides such evidence in the form of the second-stage analysis of reésiduals
from the first stage.

If the dependent variable is a dichotomy, the results are given in the form
of proportions which are on cne side of the dichotomy. Even with numerical var-
iables it is sometimes useful in analysis to form two alternative dichotomies to
find out whether the factors which push many people toward one end of a scale are
actually the mirror image of those which push them toward the other end. This is
not a non-linearity issue but a substantive theoretical issue. For instance,
factors associated with increases in savings accounts are not the reverse of
those associated with decreases.

The capacity to produce residuals from one analysis (and expected values—-
the final group mean attached to each individual in the group), enables the pro-
gram to identify and study extreme cases in more detail (cases deviant from their
own group), or to develop an expected value of a variable that could be used as
a predictor in a second analysis in the tradition of two-stage least squares or
instrumental wvariables, reducing the errors~in-variables problem.

The remainder of this chapter is an examination of the features and options

that are offered to the user.

2,2 Configurations

A rather special option unrelated tc the main algorithm is a provision fer
finding the explanatory power of the subcell means of all possible combinations
of a set of predictors. Instead of operating sequentially it subdivides the
sample factorially, even though some combinations have few or no cases, and does
a one-way analysis of variance components indicating what fraction of the total
vatiance {around the mean) is accounted for by the subgroup means, i.e., by
N, Y3 - NYZ.

It requires an extra prior step, sorting the data on all the predictors, in
ascending order, so that all cases with any given combination of predictor values
are together.

Meehl (1950) coined the term configuration and discussed what appeared to

be a paradox in which dichotomous items taken singly had no correlation with a
criterion, but their cross-product correlated. The use of configuraticn terms

in scaling was then discussed by Stouffer, Borgatta, Hays and Henry (1953).

1See Fva Mueller and Jane Lean, ''The Savings Account as a Source for Finan-
cing Large Expenditures," Journal of Finance 22 (September 1967), 375-393.
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Horst (1954) showed that Meehl's configurational techniques were a special case
of multiple regression with all variables having values of 1 or 0 and including
all possible cross-product terms in the equation. Lubin and Osburn (1957) de-
veloped the rationale even further, relating it to what they termed ''pattern an-—
alysis" by presenting a method for analyzing the relationships between a set of
dichotomous items and a quantitative criterion. Their general polynomial equa-
tion for the optimal prediction of a criterion in 1ts configural form was shown
to have maximum 'validiey' in ‘the least squares sense. They defined a dicheto-

mous configural scale as follows:

1. Given a test of "t" dichotomous items, there are 2" possible
answer patterns (configurations) and a mean criterion score
associated with each.

2. Assign this mean as the predicted criterion value for all in~

dividuals in an answer pattern.

They showed that the zero-order correlation of the configuration scale with
the criterion was equal to or greater than the correlation of the criterion wich

t

any other set of scores based on the answers to the '"t" dichotomous items. This
follows immediately from the formula for the mean, since, by definition, it pro-
duces the smallest sum of squared deviations. Consequently, the pattern means
must explain more variation than any other set of means. Sonquist (1970) dis-
cusses this further. The extension to polytomous predictors is straightforward.

Computation of the configuration score provides the analyst with some indi-
cation of what his predictors are worth in explanatory power when all the '"stops
are pulled.” It is suggested that if the variation explained by the configura-
tion is undesirably small, the analyst had best spend his time obtaining hints
as to what other variables he might undertake to include in a subsequent inves-
tigation.

Basically this option calculates a single one-way analysis of varlance ask-
ing what fraction of the total variance is accounted for by the subgroup means
if one defines a subgroup for each combination of predictor-classes.l The frac-
tion is cof the sample, not of the population, as is true of all the fractions of
variance ''explained" as used in this program. Extrapolations to the population
are difficult and depend on the variation in subcell sizes.

There is a limit on the number of subgroups (possible combinations) that can

lFor one predictor at a time the eta squared in the optional predictor sum-
mary table is equivalent to a one-way analysis of variance, again for the sample,
not extrapolated to the population.
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be handled, making it advisable to recode predictors into trichotomies in order
to use more of them. Five trichotomies produce 243 subcells. In any case, one
should not stretch the limits because with enough detail one could always make
the unexplained variance approach zero. The dependent variable should also have
its extreme cases truncated, to avoid erratic results.

The result is usefully compared with dummy-variable regression to see the
extent of the explanatory power lost with regression by assuming additivity. It
can also be compared with the usual output to see what the tree gains by not as-—

suming total detail.

2.3 Analysis Typesl

Perhaps the most promising new feature or set of features was developed to
deal with the problem of one dominant explanatory variable. Frequently in eco-
nomlc studies, income or education so dominates the dependent variable that the
data are split on little else. One may then want to remove that effect to see
what else matters. One could assume a particular relaticnship such as linear
through the origin and simply divide the dependent variable into groups by that
predictor. This often has the added advantage of improving the homogeneity of
variance where the variance of the dependent variable is related to its level.

Moreover, with non-orthogonal survey data, one may want to search out sub-
groups in which there are different relationships between the dependent variable
and the "control." For instance, in much analysis of cross-—section survey data,
the economist is often interested in the effect of income on some behavioral var-
iable, and on whether that effect (as represented by its slope) varies with other
circumstances. The answer to this question will tell him whether it is necessary
to disaggregate the data in the models used for forecasting, and the optimal way
to do it.

Soclologists, psychologists and market analysts often face similar problems
in which the purpose of the investigation requires isolating the effect of a par-
ticular variable under a wide variety of combinations of circumstances. For in-
stance, intelligence, alienation and authoritarianism have all been the subject

of repeated investigations in which the object has been to relate the particular

lParts of this section are adapted from Sonquist, Baker and Morgan (1969).

%See L. R. Klein and J. N. Morgan, "Results of Alternative Statistical
Treatments of Sample Survey Data,' Journal of the American Statistical Associa-
tion 46 (December 1951), 442-460.
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factor to specific consequences in such a way as to specify the form of the re-
lationship under various conditions and for particular types of people.

Another illustration is in the analysis of changes taking place over time.
The initial value of a phenomenon under study clearly affects its value measured
at a subsequent time., This is why the residuals from the regression of its t

2
value on its initial t, value are often used as a measure of change, instead of

the raw increments. ;owever, this "initial value" effect may not be the same

for all subgroups in the population. If, then, a single equation is fitted, a
downward bias would be exerted on the correlations between change and those fac-
tors thought to be responsible for it. Thus, when residualizing a variable for
study, a search should be made tc determine if this effect is homogeneous through-
out the population. Where "regression" toward normalcy over time is powerful, a
two-stage analysis allows using the first analysls to estimate deviations from
expected first-year levels (from final group averages) and using a recoded set of
class intervals on them as the covariate or a predictor in a second-stage analy-
sis of change.

To deal with these covariate problems, the AID algorithm has been expanded
from the original means analysis to include a regression analysis, where the sum
of squares is explained by differences in the two subgroup regression lines in-
stead of the subgroup means.

In addition, one may ignore differences in the intercept and consider only
differences in the slopes. This slopes criterion differs from the other two suf-
ficlently to warrant a more detailed description.

The difficulty with subgroup regressions (simple correlations) is that their
explanatory power is dominated by differences in the levels of the regression .
lines rather than their slopes. And we may not even care to isolate groups with
a high level on Y, being interested rather in groups with differences in the
slope of the XY relationship (income elasticity, etc.). Hence a third optionm,
the covariance search, calls not for a criterion of explanatory power for two
separate regressions, but the power of two different regression slopes using the
parent group level.

Since there may be several subclasses on each side of a split, the criterion
is the power of the weighted average slope, not a pooled slope, on each side
since different subclass means on X ande can distort the pooled slopes.

The search for differences in regression slopes only turns out to be more

complex than one might think. Suppose one wants to separate the K subclasses of

lFor a thorough discussion of this problem see Lord (1950).
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a characteristic inte two groups, the first comsisting of groups 1 through Kl and

I+l through K. The first set may all have very

steep slopes, the second very flat slopes, but if either their means on X or their

the second consisting of groups K

means on Y vary, the pocled slopes of either of the two sets may have little re-
semblance to the subgroup slopes. A diagram may make this clearer. Suppose

there are three subgroups in a set, forming separate clusters. While each of the

(o]

Dependent Variable

Covariate X

three groups has a regression slope of approximately 1.0, the regression slopé
pooling Kl and K2 would be approximately 2.0 and that pooling Kl and K3 would be
approximately 0.0, and that pooling all three groups would be negative.

Hence, whether or not the subclasses are rearranged in order of their re-
gression slopes, a criterion which uses the two pocled slopes from the two sub-

groups (1+K Ki+1 + K) would hide a great deal, whenever the subclass means dif-

i’
fer on X or Y or both. So, we use the weighted average slope for each of the two

children, both as a criterion for deciding which split to make and as the criter-
ion for calculating residuals where they are to be used in a subsequent analysis.

As the formulas show, one can think of the remaining error variance around
predictions using such a weighted average slope, instead of a poocled slope as or-
iginally proposed. Indeed, the terms subtracted from total sum of squares separ-
ate into one table attributable to subgroup means and one attributable to the
weighted average slope.. There are two such "explained sum of squares'" terms, one
for each of the tweo children. The criterion for selecting the best split is the
maximization of that term (not of the total explained sum of squares, which in-
cludes terms for the subclass means). (See Table 2).

This is somewhat intuitive. For instance, there is no proof that where the
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Analysis of Covariance
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subclasses are rearranged accerding to subclass slopes that one of the K-1 splits
using that ordering will be the best.l

Not only must we use an average slope, rather than an overall slope, for the
parent and for each child at any split, but we must calculate the net gain from
using two different average slopes, one for each child, over using a single aver-
age slope for the combined parent, because the latter is not constant for chang-
ing predictors!

In the case of means, the explained sum of squares from knowing only the
parent group mean is NY2 regardless of the predictor, but with slopes, it is
E-chz which will vary with the predictor classification since each one will pro-
duce a different b.

Both with regressions and with slopes only, if the overall regression on the
full sample accounts for much of the variance, the subgroup differences have less
variance to account for, yet the criterion 1s a fractionm of the original variance
around the mean, hence the split reducibility criterlion must be set lower. Slopes
are also extremely sensitive to extreme cases, in X or Y or XY, and tend to be-
come unstable very rapidly as subgroup sizes diminish. The different slopes may
account for very little of the variance but may still provide scme jmportant in-
formation. And the procedure can be used to trick the computer into solving some
other problems: One can use a dichotomous 0-1 covariate, like sex or race. The
program then looks for groups with the largest differences in the racial or sex-
ual differences, say in earnings. Or one can merge two .separate surveys from
different times or places, use a 0-1 covariate representing which time or place,
and search for the groups with the largest differences between times or places.

The last possibility opens up vistas of powerful use of separate cross-
section samples to search for social trends and their differences. The predic-
tors, of course, should be things that do not change for individuals: race, sex,
education, farm background, age (increases by one each year). The results should
be far superior to the present system of finding groups that differ in one data
set and looking for differentials among them in the differences with another data
set, There is no reason to expect a correlation between the two, and we really
need to search explicitly for the subgroups that differ on the differences.

Given the problems with weighted average slopes, however, 1t is advisable to

reduce the number of categories of each of the predictors to five if the order is to

lSee Appendix VI giving Ericson's proof for means which may or may not ex-—
tend to slopes, reprinted from John A. Sonquist and James N. Morgan, The Detec~
tion of Interaction Effects, the Institute for Social Research, The University’
of Michigan, Ann Arbor, Michigan, 1964, pp. 149-157.
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be maintained and three if it is not.l And it is particularly important to
eliminate extreme cases in the dependent variable since they can have such a dis-
turbing effect on estimated regression slopes. There may also be a problem if one
of the two covariate groups is relatively small and is affected by something on
which the majority group does not split evenly, so that not enough cases appear on

one side of the split.

2.3.1 Means Analyses

If the total sum of squares for the parent group is

N
Ss = Jy2-NY2
1

and the corresponding sums of squares for the two children are

N, N
2 _—
- 2 _ oy T2 Yooy ¥2
ss; = § y N,¥7 and S8, gy Y2,

where N=N1+N2, then splitting the parent group such that the observatiens within
each of the children are homogeneous is equivalent to minimizing the quantity

SSl+SS Thus the reduction in the total sum of squares,

.
Ny N

2 - =
SS-(SS 455 )= § y2-(J y24] y2)-NYZ+(N Y2 4N Y2 ) = N Y2 4N Y2 -N¥Y2 (1)
120 11 22 11 22

is maximized., But this is simply the between sum of squares term in a one-way

analysis of variance (Table 3).

2.3.2 Regression Analysis

The corresponding between-sum-of~squares term for a regression analysis
(neans and slopes) can be formed in a similar manner. Table 4 is an analysis of
variance representation of the regression of Y on X. (The derivation of this
table may be found in Brownlee, pp. 338-341.) The error or residual sum of

squares from estimating the regression line in the parent group is

lSee Kalton, Table 1.
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By splitting the parent group so as to minimize the residual sums of squares for

the two children, the reduction in using two regression lines instead of the or-

iginal regression line for the group is maximized, i.e.

N _ 2
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2.3.3 Slopes Analysis

In a slopes-only analysis the analyst is concerned only in maximizing dif-
ferences in slopes without regard to means. Thus, for a given predictor, the
parent group should be split such that class slopes within a given child are ho-
mogeneous. For example, if the parent group has three classes, the first and
second with idemtical slopes bl=b2 but different means. The overall or '"pooled”
regression line for a child with classes 1 and 2 will have a totally diverse
slope bp, and the group will be split between classes 1 and 2 rather than between

classes 3 and 2.
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In the slopes-only analysis then, it is necessary to disregard differences
in class means in estimating a group slope.

If for a given predictor there are k classes in the parent group with n, ab-
servations in each class, then the average slope over the k classes can be shown

to be: (see Brownlee, Chapter 11)

kM _ _
1 E (75040 %y 57%y)
T i=1 q=1 s
k n
i - .2
z z (xia_xi)
i=1 a=1

and the resultant residual sum of squares using b is:

k o, _ 2
i{ P (ryymvy) ey mx)

koo ko 21 a=1

= - 2 .

: 121 aZly ia 1zlniyi koomy - “
E Z (le.tr.-'xi)2
1=1 a=1

Note that the essential difference between equations (2) and (4) is in the
means. The regression analysis takes deviations from an overall group mean while
the slopes—only analysis takes deviations from class means. This results in a
different total sum of squares term for each predictor.

Splitting the parent group on a given predictor such that the reduction in

the parent group residual sum of squares is maximized is equivalent to maximizing
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= 32
where k = k1+k2, since the zyz and Eniyi terms cancel.

Clearly, selecting which of several subgroups are to go on one side of a
split according to subgroup regression slopes and also allowing re-ordering of
the subclasses of a predictor, is a doubly dangerous procedure, quite likely to
produce idiosyncratic splits and results difficult to explain. Regression slopes
are less stable than means, affected by extreme cases in either the covarlate or
the dependent variable but particularly by any cases extreme on both at the same
time.

On the other hand, if one is searching for differences in regression slopes,
not in levels of the dependent variable, the regression option is unsatisfactory,
since different regression line levels account for so much more of the variance
than differences in their slopes. Differences in level would dominate the selec-
tion of predictors in covariance search processes using regression.

The best policy if one is searching for slope differences, would seem to be
to (a) be doubly careful to eliminate or truncate any extreme cases on the de-
pendent variable, or on the covariate, and (b) recode the predictors to collapse
each to three or four classes for those to be left "free'" and four or five clas-

ses for those whose rank order is to be maintained.

2.4 Pre-Set Divisions

The program has a simple procedure for specifying a sequence of splits, af-
ter which the usual search procedure can attempt further splits. The purpose of
allowing the analyst to force the first few splits 1s mainly to allow a prior di-

vision of the sample into some obviously different groups that are not expected




Table 3

Analysis of Variance for Differences

Source of Variation

in Means

Degrees
of
Freedom
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Observations around
grand mean
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Table 4

Analysis of Variance for Regression

Degrees
of Mean

Source of Variation Freedom Sum of Squares Square
Regression estimates 1 (N—l)r252 (N-1)r2g?
around Y y Yy

& -1n2
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Where r2 = Y=Y+ byx(x-x)
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te show the same patterns. But the procedure has other uses. One may want to
take output derived from another set of data, or half the sample, and force it

on a set of data to see how well it explains that data set (percent of variance
explained). One cannot compare two different trees very well--they differ in too
many ways. But the differences in the subgroup means and in the variance ex-
plained, when the same tree 1s imposed on a second set of data, provide impor-
tant insights into the stability of the first findings. It would techaically

be possible to make estimates of the probability of arriving at the same tree
with a different set of data, but 1t depends on the sampling errors of differ-~
ences between variances—--the sum of squares that are compared at each split in
deciding which split to make. If there are other possible splits which would
explain nearly as much variance, then the probability that in another sample they
would actually explain more, is large. And the probability of arriving at the
same whole tree is clearly the product of the probabilities of making each of the
successive splits the same way--a number which falls rapidly as the tree grows.

Or one may want to look at a set of related dependent variables, for groups
which differ a lot on one of them, Another use of the pre-set tree is to dis-
aggregate a sample sequentially according to some logical order. Poverty, for
instance, may be explained by some clearly exogeneous and irremovable forces:
old age, physical disability, a single adult who has children or disabled people
to care for, lack of education or job skills. Similarly, in looking at change
in family income, one may want to remove sequentially those with a changed family
head, a shift in marital status, changed number of adults, etc. Figure 3 gives
an example of this, where the covariance option was used in order to provide two
means for each group, income change and change in heads, by pretending that the
latter was the covariate.

It is not always a good idea to force splits merely because there is some
deviant group with an obvious explanation--such a group may often be found by the
regular process of splitting.

A major purpose of the original program was to avold the arbitrary selection
of subgroups for separate analysis, and to allow the data to suggest the appro-
priate subgroups, divide the sample into them, and proceed. The criterion of
power in reducing error variance used with the program assures that the groups so
split off will be both different encugh and large enough to deserve separate
treatment.

There are, however, situations where some group is important out of all pro-
portion to its frequency in the sample, for theoretical or ethical or public pol-

icy reasons., In this case one may want to force a subdivisicn at the start. But
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one may also want simply to look at that subgroup within each of the groups gen-
erated by the analysis to see whether it differs from the majority anywhere in
the population. The difficulty with the forced procedure is that the group will
be so small that the criterion for allowing further splits may not allow any.

An alternative for examining such minority groups is to assign them weights
appropriate to one's values and proceed with a weighted analysis. If they have
been oversampled, and weights have been used to reduce the influence of that
group to its proper proportion in the population, one can simply run an un-
weighted analysis to allow the oversampled group more influence. The recoding
flexibility allows any complex generatlon of a new weight variable for an analy-

sis without rewriting a new data tape.

2.5 Lookahead

Experimentation with the original AID algorithm to determine its behavior
under known conditions has been carried out using contrived data,! While the or-
iginal procedure was found tc be capable of dealing adequately with many two-way
interactions, others were identified as beilng difficult for it to deal with,
These were seen to consist of interaction relations characterized by consistency,
i.e., by balance or symmetry. Oune such example is the "exclusive-or” model shown
below. No main effects appear in these cases, gg no split is made that would re-

veal the mutually offsetting interaction effect inslde.

B Not B
A | High Low
Not A | Low High

"EXCLUSIVE-OR"

The obvious test is to take each predictor's best split on the group in
question and make one or two additional splits (the best possible) on one or both
of the resulting subgroups. One then asks which set of two (or three) splits pro-
vides the largest total sum of squares explained, makes the first split, and pro-
ceeds. It is possible that a weak first split would allow subsequent splits that
were sufficiently powerful to offset that fact. Certainly even a two—split se-

quence would uncover the offsetting interaction effect just described.

1An extensive discussion is presented by Sonquist (1970).
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Although the frequency with which variants of this model actually occur in
real data is not known, it is notable that at least one realization has received
considerable attention in the recent sociological literature, the concept of sta-
tus inconsistency.l Analysis techniques for dealing with this class of models
are of importance for economic, educational and psychological research as well as
for sociology and marketing.

It can be seen that the earlier sequential partitioning algorithm which ex-
amines only the zero-order effects of A and B separately could not discover the
consistency effect in a number of these models. In some cases there are really
two A effects and they cauncel each other out in the total group. Of course, the
additive assumptions required in regression or Multiple Classification Analysis
would also tend to conceal the real state of the world,

However, the extended AID algorithm incorporated into this version of the
program can be instructed to partition the sample tentatively, first on one ex-
planatory variable and then on the other (as well as making tentative partitions
on other variables). This makes it possgible first to reveal the consistency ef-
fect to the analyst by means of profiles of means and differential changes in ex-
planatory power, then to make an appropriate partition and, finally, to continue
with the rest of the sequential search procedure.

In general, such a two-split scanning algorithm appears to provide complete
and peosirtive identification of all two-way interactions existent in the data. It
will even provide leads or clues to the existence of three=way interactions.
This 1s seen to be a simple extension of the way in which the present algorithm
provides clues to the existence of two-way interactions. An algorithm which ex-—
amines the cfoss—classification of p predictors simultaneously can identify com-
pletely terms composed of p raw variables regardless of the symmetry of the term.
However, such an algorithm also appears capable of revealing a term involving p
+ 1 raw variables if the term is asymmetric.

For instance, if we have the three variable negative "and" model:

"If A and B and C, then ¥ = 0, otherwise Y = 4"

the algorithm using a two-split strategy would produce the sequence of partitions
illustrated in Figure 4 and reveal the basic structure,

0f course the amount of computing required to search out combinations of
three or more variables increases as an exponential function of the number of
variables considered simultaneously. Hence constralnts have to be put on the

process to permit the elimination of unpromising leads and thus the examinatiocn

lFor an example, see Blalock (1966).
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of the subsequent partitions.

2.5.1 Lookahead Algorithm

There are two parameters governing the lookahead process:

(1) the number of lookahead steps, i.e., partitions tade after the tenta-
tive partition of the parent group; and

(2) the number of partitions for which all variables are to be permuted,
i.e., where the algorithm "forces" the group to be tentatively split on

each predictor.

Thus, in a l-step lookahead; two successive partitions are made and the permute
parameter must be 1; and in a 2-step lookahead, three successive partitions made
and the permute parameter may be 1 or 2.

A l-step lookahead with 1 forced split is executed in the following manner:

(A) Every predictor is examined as a possible basis for partitioning the
candidate group. The '"best" split definition is saved for each pre-
dictor.

(B) A tentative partition 1s made on the first predictor based on its best
split from (A).

(C) The resulting new group with the largest unexplained sum of squares is
the new candidate group, and the best split for each predictor is de-
termined for this group.

(D) The predictor found to be the most powerful is selected as the parti-
tioning variable for this second group, and the total amount of vari-

ation explained by the two partitions (three groups) 1s saved.

1 Best split on
1st predictor

Best split on
any predictor

{E) Steps (B), (C), and (D) are repeated with each predictor in turn used
at step (B) to create the first tentative partition.

Thus, if there are k predictors, the entire process is repeated k times;
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each time the explained variation is recorded. At the end of the k repetitions,
the k tentative levels of explained variation are compared. Then, that parti-
tion rule for group 1 which had been associated with the configuration providing.
the largest obtained level of explained variation is now actually used to split
group 1 into two parts. At that point, the algorithm starts over again from the

beginning.

2.5.2 Stopping the Lookahead Partitioning

Permitting the algorithm to wind itself so closely around the data as is
done in, say, a three-step lookahead, runs the risk of spurious splits.1 Hence
this version of AID has had incorporated into it a serles of contrels that per-
mit the user to reduce the probability of obtaining incorrect or unstable, un-—
reproducible results. Provision has been made to require that if the lookahead
option is exercised partitions based on it must explain proportionately more var-
iation than a partition based only on permutations of the predictors in a single
group.

When a lookahead of k splits is used, a parallel number of gplit reducibil-
ity parameters are submitted, one for each of the k tentative partitions. A
split reducibility parameter is that percent of the total sum of squares which
must be explained by the proposed partition in order for it actually to take
place. These parameters, each consisting of a percentage (e.g., .6%, 1.8%Z, etc.)
can be set by the user in such a way as to require that in order to be used, a
partition based on a lookahead of length two would have to explain more variation
than a partition of the same group based on a lookahead of length one, and that a
partition based on a lookahead of length three would have to explain more than a
partition based only on a lookahead of two, etc., etc. Further, the analyst is
given control over how much more powerful a split based on a lookahead of length
k + 1 must be in comparison to one of length k.

The analyst may require that any partition of length k explain Pk of the
original total variation in the dependent variable. This is accomplished by set-
ting P, to a percentage between ,01% and 100%; for instance, setting P to 1.8
Wwould mean that the three groups tentatively generated by a lookahead of two
splits would have to explain at least 1.8 percent of the original total sum of
squares for the partitlion associated with these three particular groups actually
to be used. Each of the P, are set by the user independently of each other.

k
This means that the lookahead can be set to exhibit a preference for partitions

1See Sonquist (1970)
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based on two or three tentative splits. These preferences are expressed as per-
centages of the total sum of squares.

It is recommended that in the absence c¢f other guidelines, the first look-
ahead be required to explain at least twice (and that the second lookahead be re-
quired to explain at least three times) the variation required for a split to
take place at all. That is, lookahead steps should be required to explain at
least an additive function of the initial requirements.

» The lookahead algorithm always works from the "top" down; that is, it at-
tempts first to make a partition using the longest lookahead that has been per-
mitted by the user. If it cannot make a partition using a lookahead of this
length (i.e., the reducibility criterion for that length lookahead cannot be met
or all of the resulting partitions would cause some of the new groups to be be-
low the minimum size)} it then trles to partition the group using a lookahead one
step shorter. It repeats this process if, at any given point, none ¢of the result-
ing partitions meet the explalned variation and minimum size requirements. Fin-
ally, if it cannot make a partition of the group under the requirements for no
lookahead, it marks the group as a final, unsplittable one.

We now give a more formal statement of the operation of the lookahead under
the reducibility criteria.

Let TSSD be the total sum of squares for the dependent variable. Let S be
the lookahead length specified by the user. Let Bi (8) be the explained varia-
tion resulting from a proposed split on variable i with lookahead length S.

Then Bi(o) is this maximization function for the original AID algorithm.
Bmax(s) is the largest Bi of all those computed at lookahead length S--that is

B () > B;(s)

where i ranges over all candidates resulting from the lookahead.
Then 1if
Bmax(s) > PS X TSSO; S specified,

the parent group is split on the original predictor i which yields Bmax(s). If
no Bi(S) satisfies this inequality, then the maximum Bmax(s-l) at the previous
step (5-1) in the lookahead i1s compared with the required minimum explanatory

power PS—l'

Finally, if, upon examination, Bmax(o) < P0 x TSSO, the parent group is
termed final and no further attempts to split it are made. The lookahead will
not contlinue beyond any step where a resulting group is smaller than the minimum
group size specification. Also, the process is stopped when the maximum number

of splits has been reached.
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2.6 Predictor Constraints

The original AID algorithm provided for constraining the ordering of the
classes of each predictor. The present variaticn of the program allows this con-
straint of ordering, and, in addition, allows the user to require that certain
predictors be ranked so that some must be used before or after others in the par-
titioning process. Further, some variables may be inserted as predictors, but
ranked so that gtatistics are obtained for them, but they are never actually used

to partition the input sample,

2.6.1 Monotonic vs. Free

Any input variable may be used as a predictor, provided it is either read
in as an integer in the range 0 to 31 or is recoded so that it falls in this
range. Predictors are also classed either as Free or Monotonic. Monotonic pre-—
dictors will have the order of their coded values (0,1,2,...,29,30,31) maintained
during the partition scan. In this case, the classes of the predictor will not
be reartanged by sorting them into ascending sequence using the within-class
mean value of Y (means option), or the within-class slope of the regression of Y
on X (slopes or regression option). Thus, this option is intended for ordinary
use with predictors which are ordinary scales or which consist of class-interval
codesvestablished for a continuous variable,

The classes of a '"free'" predictor are rearranged te find that partitien
which maximizes the sum of squares between the two resulting groups. For a pre-
dictor with k classes, the partition of these classes intoc two sets with m clas-
ses in one and k-m classes in the other (m=1,2,...,k-1) that maximizes the be-

=2 —2 .
+ u,y, - oy , is that one where the m class means

tween sum of squares, ni?l

in the first group are less than or equal to the k-m class means in the second,
- - - - 1 .

i.e.,yl, eees Yo S V1 e Yy Thus, one need conly examine k-1 partiticns,

after arranging the k groups in ascending order according to their means on the
dependent variable.

No proof exists that the correspondence between sum of squares in a covar-
iate analysis is maximized by sorting on class slopes, however, it seems a reas-
onable assumption especially since it cuts the number of possible combinations
to be examined considerably.

The usual use for the free predictor designation is for variables that are

nominal scales, or for other cases in which it is desired not to constrain the

1See aAppendix VI for a proof of this by W. Ericson.
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classes which are to be placed together in the resulting two new groups.

The free option should be used sparingly, since it vastly increases the
number of things looked at and the possibility of idiosyncratic splits. If a set
of categories does not form a natural ordering, it is quite possible that it re-
presents more than one dimension, e.g., occupation which contains elements of
skill, white versus blue collar, managerial responsibilities, entrepreneurial
activities, self-employment, etc. In such cases, it is better to convert the
classification into a series of dichotomies, or even to maintain the order, not
allowing splits with odd combinations on each side. It is better to recode, to
put such codes as "inapplicable" and "missing information" in a reasonable place,
than to leave a whole predictor free because of them.

Even non-monotonic relations can be handled unless they are symmetrical,
and the output of a run that maintains order will reveal what reordering might

be substituted.

2.6.2 Ranking

To facilitate user control over the order in which predictors are used in

the partitioning process, two predictor ranking options have now been incorpor-

" [}

ated into AID3. These are termed “simple ranking' and “range ranking." In both
cases, each predictor is assigned a rank. Ranks may range from 0 to 9.

Rank zero has a special significance; all variables assigned tc rank zero
will have statistics computed for them in every parent group that is selected
for a partition attempt. However, rank zero variables are prevented from enter-
ing into the actual partitioning process and they are not examined in the look-
ahead. This permits the user to insert one or more variables as predictors, and
examine their effect profiles in various parts of his sample without permitting
them to enter into the partitioning process. Rank O can be assigned to any num-
ber of variables whose effects 1t is desired to observe and it may be used with
elther of the ranking optioms. It is particularly useful for variables which may
either affect or be affected by the dependent variable.

The user may elect to assign as few as two of the available ranks or he may
use all ten. He may assign the same rank to several of his variables. He may or

nay not wish to use zerc as a rank.

2.6.2.1 Simple Ranking

The objective of simple ranking is to permit the user to govern the order
in which various sets of variables are permitted to enter the partitioning pro-

cesg.
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The algorithm then uses the ranking assignments as follows. The total
sample is partitioned using only those variables in the highest non-zero rank
(smallest non-zero integer). Statistics are computed for all ranks, however, in-
cluding such variables as may have been given rank zero. If nome of these vari-
ables are capable of producing a partition rule that meets the split reducibility
and minimum group size requirements supplied, then that rank is chosen which is
next highest (i.e., which has the next assigned number). All of the variables
which had been assigned this next highest rank are now eligible to be used as
the basis for a partition and may now be used’in the lookahead, and the first
(highest} rank is abandomed. If, again, none of these variables can be used, the
program abandons this rank and proceeds to the next one. This continues either
until a rank is reached at which a successful partition can be made or until
there are no more predictors.

" this

When a guccessful partition is made, the program is said to be "at
rank., All higher level ranks are abandoned. Variables in the abandoned higher
level ranks are no longer eligible for being used as the basis for a partition,
although the program will continue to compute statistics for them in the parent
group. They will no longer continue to be considered in the lookahead computa-
tions, however. Lower level ranks have not yet become eligible.

Further partitions of the new groups that have been created as a result of
a partition will be made "at" that rank provided they meet the reducibility and
minimun group size requirements. Whenever the requirements are not met by any
variables having the rank where the program is "at,”" it moves downward to the
next highest rank (i.e., which has the next larger assigned rank number)}.

Note that various branches of the tree may work downward through the ranks
at different speeds. Where the program is "at" in any given branch depends only
on where it was "at" in the preceding node and on the ability of those and the
next ranked predictors to produce a satisfactory partition.

This can be illustrated as follows: consider the following ten variables
ranked as indicated in Table 5. Variable ten is ranked 0, variable one is ranked
1, variables two and three are ranked 2, etc. When the partitioning starts, var-
iable one is the only predictor eligible for use, since it is the only predictor
in the first rank., However, statistics are produced for variables in rank 0 and
for the other ineligible predictors. The lockahead could not be used since sev-

eral of the ranks have only one predictor and there must be at least ktl predic-

torg in every rank used if a lookahead of length k is used.

If variable one did not meet the reducibility and minimum group size cri-

teria, the algorithm would move to rank 2, abandoning rank 1. Variables two and
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Table 5

Ten Variables and Six Ranks

Variable Rank
10 o}
1 1
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three would then both be eligible for consideration, but variable one would not
be. However, agaln statistics are produced for all input predictors. If a par-
tition were made, say, on variable three, then the algorithm would start its next
partition attempt again using the rank 2 variables, variable numbers two and

three.

2,6.2.2 Range Ranking

The second ranking option, range ranking, provides somewhat more flexibil-
ity in the way in which variables are used in the partitioning process. In ad-
dition to the ranks themselves, two ranges of ranks and a preference are supplied.

The preference can be set "UP" so that the algorithm chooses its partition-
ing variables starting with the highest rank (provided they meet the reducibility
and minimum group size criteria). Alternatively, it can be set to 'DOWN" rever-
sing the preference order, or to "AT" providing a third alternative. The pref-
erence 1s effective within the range of ranks specified by the user. Variables
outside the range (either because of abandonment or because progression 'down-—
ward" Into the ranks that far has not occurred yet) are excluded from eligibility
as 1n simple ranking, although, as above, they always have statistics reported

for them.

" "

As in simple ranking, the algorithm is initially "at’ rank 1; subsequently,
the "at" rank is determined by the last partition in that branch of the tree.
The eligibility range is defined as a certain number of ranks "up'" and a

certain number of ranks "down'" from the rank where the algorithm is "

at." Any
variable in that range of ranks is eligible for use in a given partition.
The preference option can be set to cause the algorithm to start at one end

or another of the eligibility range. Alternatively, the preference option can be

set to cause the selection of variables to start where the algorithm is "at In
each case, the algorithm first determines whether or not according to the reduc-
ibility criteria a split could be made on the basis of one of the variables in
the preferred rank. If there is at least one that meets these eligibility and min-
imum group size requirementsa, the actual selection of a variable to use as the ba-
sis of the partition is made from the variables in the preferred rank. If there
are none that meet the criteria, the algorithm attempts to make its selection from
the variables in the next preferred rank. If, after failing the entire length of
the range (no variable has been found which works) the algorithm moves "down'" one
rank, bringing the next lower rank within the range.

If the preference is for higher ranked variables, the algorithm will start at
the highest (1,2,3, etec.) end of the ranking range. If the preference is set for

lower ranked variables, the algorithm starts at the lowest (8,9) end of the ranking
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range moving back upward if not successful. When the preference is set for lower
ranked variables, and the unsuccessful attempts to find a split variable have
caugsed a progression back upward all the way to the end of the eligibility range,
the algorithm again moves downward so a new rank is brought in at the "downward"
end of the eligibility range and an attempt is made to use these newly eligible
variables in the partition.

If the preference is set for variables at the rank where the algorithm is
"at" and the search is unsuccessful, then both adjacent ranks are made available
for scanning and, if possible, a variable is chosen from a higher rank, i.e., to-
wards 1. If the variable eventually chosen for use is in one of the adjacent
ranks, the algorithm progresses upward or downward accordingly, and is then "at"

a new rank. A summary of the various possible options 1s given in Figure 5.

A separate range is provided to govern the lookahead operation, i.e., tenta-
tive splits of other than the parent group. The operation of the lookahead range
1s the same as that of the parent group except that statistics for variables at
rank zero or outside the current range are not reported. The lookahead range must
be at least equal in width to the range used for the partition, and it may be

wider. More specifically, the number of ranks "up"

must be equal to or greater
than the number of xanks "up'" specified for the parent group range. Similarly,
the number of ranks 'down' must be a number greater than or equal to the corres-—

ponding "down" range specified for the selection of variables for the parent group.

2.6.2.3 Using the Ranking Options

The purpose in providing these types of ranking is to permit the analyst to
impose whatever theoretical considerations he may have on the order of the split-
ting process.

The simplest use is to look at the effects of a variable butAnot split on
it (assigning it rank 0). This allows looking at its relationships without al-
lowing it to make divisions, an especially useful procedure if a variable is not
clearly either cause or effect of the dependent variable. This is particularly
true of attitudes, where one may want to know their relation to the dependent
variable without assuming that they cause it, rather than result from it. In co-
variance analysis (see above}, one may want to use classes of the covariate in
order to see whether there are non-linearities which the covarlance analysis as-
sumes away (assigning the bracket rank 0). The print-out will provide means of
the dependent varilable withln groups according to the covariate at the same time
it is computing the regression slopes. It is always possible that a relationship

that is linear overall is not linear within some subgroups, and this procedure
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Figure 5

Results of Alternative Rank Specifications

Eligible Rank Numbers, in
Range UP (L) Range DOWN (K} Order of Preference

SIMPLE RANKING

ALL

uP

AT

NOTE:

RANK VAT-L" "ATHK" (Low number = high rank)
0 0 1, 2, 3, ... M (if M ranks speci-
fied)

L 0

0 K Not allowed

L K

RANGE RANKING (see NOTE below)

0 0 Equivalent to "ALL"

0 K A, Atl, A+2,...A+K (Preference for A)

L Q A-L, A-L+1,...A (Preference for A-L)

L K A-L, ..A, Atl, ... AtK (Preference
for A-L) i.e., always tries lower
rank numbers and works up (down the
the ranks) to A, then on to A+K.

0 0 Equivalent to "ALL"

L 0 A, A-1l, A-2, ... A-L

0 K A, AHl, At2,...A+K Prefer-

ence

L K A, A1, AF2, .. AFK,A-L for A

0 0 Equivalent to "ALL"

L 0 A, Atl, A-2,...A-L (Preference for A)

0 K A+K, A+K-1,...A+1, A (Preference

for AHK)
L K AK,...A,... A-L (Preference for A+K)

If '"'A" denotes the AT rank, "L" the number of ranks UP, and "K" the number
of ranks DOWN, then the eligible range is [A-L, A+D].

On the first split, A=1. A-L is bounded by 1, and A+K is bounded by 9,
e.g., 1f A=4, L=5, K=6, then the eligibility range is still only 1-9.

"up', "AT", and "DOWN" refer to rank numbers, so "UP" the numbers means
down the ranks, the usual procedure.

"UP, L, K" tries the full set of ranks at each split, starting with A-L
which can be set equal to 1, but in practice the results are likely to
be the same as "ALL".
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will reveal the problem.

But perhaps the most important use of ranking is in the situation where
the explanatory variables are not all at the same stage in the causal process—-
some being clearly logically prior to othera.l Then one may want to give Rank 1
to the exogeneous, background, and constraint variables, and only then allow var-
iables that represent the current situation, motives, opportunities, and recent
changes, to come into play at Rank 2. Such a procedure is an alternative to a
two-gtage analysis using pooled residuals from one stage as the dependent vari-
able in a second analysis. If one feels that there are interaction effects be-
tween variables at the two levels, that is, that the groups according to back-
ground variables will respond differently to current situational variables, then
it would be better not to pool. But pooling does have advantages in providing
larger groups, more stability, and more degrees of freedom.2 Finally, one may want
to put at a last and highest rank, variables which may be either cause or effect,
but whose relationship to the dependent variable is of interest.

A minor option with ranking is a choice whether one allows only the pre-
dictors at that rank (UP, 0, 0), or allows all those already tried and exhausted
to come back in if they can (UP, L, 0). It is minor because the chance that they
will do so is small.

For range ranking, a.preference must be stated for UP, AT, or DOWN. The
best eligible predictor in the preferred rank will be chesen over predictoras
in other ranks regardless of explanatory power. Simultaneous inclusion of all
previous ranks can be achieved by redefining the predictor ranks.3 Using the

previous example of Table 5:

STEP rank 1 variables rank 0 variables

1 : 2-10
4-10
6,7 4-5,8-10
6-7 5,8-10
10

(S R SO A g

lFor example, see Sonquist and Morgan (1964), pp. 105-109.

2For extensive use of pooled residuals in two~ and three-stage analysis, see
Morgan, Sirageldin and Baerwaldt, Productive Americans, 1966.

3See section 2.9 and Appendix III (an analysis step).
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2.7 Premium for Symmetry

Particularly when there are several predictors in close competition for
splitting on the dependent variable, it is tempting to suggest that one would
prefer a symmetric tree if forcing that symmetry did not result in loss of too
much explanatory power. The advantage of a symmetric tree or section of a tree
is that it is simpler. Indeed, a totally symmetric tree implies an n-dimensioned

' table where all the subcells are important and different. What is meant by sym-
metry? It means that if one of a pair cof groups has already been split on par-
ticular classes of a predictor, the other of the pair is split in the same way.
A looser definition would be that the second is split on the seme predictor, but
not necessarily with the same sets of subclasses on each side of the split. The
advantages in simplicity of this partial symmetry seemed minor, so we use the
complete symmetry.

One can, of course, set the premium at 100 percent, forcing symmetry, but
still leaving open the decision about the first split made on each of a pair.
This will still not force total symmetry; since once one has two pairs of groups,
the first splits on each of the pairs can be different!

The option allows selection of a loss-function specifying how much one is
willing to lose at any splitting decision, relative to the best split, in order
to achieve symmetry. In other words, one might end up with some symmetric splits
in an otherwise nonsymmetric branching diagram. A ten percent premium for sym-
metry (penalty for assymetry) means that the symmetric split will be made if its
Power 1s at least 90 percent that of the best gplit. For example, the symmetric
split is made if its BSS satisfies:

Premium igg Symmetlys . (BSS for best split).

When the symmetry option is specified, the algorithm selects the symmetric

> BSS for the gymmetric split > (1 -

branch of the tree to gplit on next (as opposed to that group with the largest
unexplained sum of squares) whenever possible. Symmetry takes precedence over
ranking, provided the symmetric split is an eligible one.

If one really wants to know the total loss from total symmetry, then the
configurational option gives the explanatory power of a total tree using all the
details of a set of predictors and can be compared with dummy-variable regression
using the same predictors, which is total symmetry.

We have not found very many places where this feature was useful, and it
borders on another problem~-the dominant variable. If each of several groups
splits on the same predictor because it is dominant, a better solution may be to
go to the covariance approach described above in Section 2.3.

Even perfect symmetry does not imply additivity. Just because each of two
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groups can be split in the same way on the same predictor does not mean that the
differences between the resulting pairs will be the same, absolu£ely or relative—
ly.’

Additivity of effects (absence of interaction effects) is a sufficient but
not necessary condition for symmetry of a branching diagram. It is possible for
the same predictor to be the most powerful for subsequent splits of each of a
palr of groups, but nat to have a uniform effect on the two groups. The branch-
ing diagram below is a real case, hence makes the point only weakly (Figure 6a).
The data produced a symmetric tree but an interaction effect clearly exists.

If we take the weighted means for whites and nonwhites, and for young and
old, to estimate the interior of the table assuming additive effects, we have
Figure 6b, where the first entry is the actual proportion, the second the expec-
ted proportion, and the third the difference.l It is clear that the older non-
whites are more likely and the younger less likely, to approve of mothers' work-
ing, than an additive model would suggest.

Actually, one could also take the unweighted means for whites and non-
whites, and for young and old, to estimate the interior of an additive table,
though such data are unavailable unless one has the detailed table in the first
place. In this case we get Figure 6c, which says that older nonwhites and young-

er whites are more likely to approve, and the other two groups less likely.

2.8 Elimination of Extreme Cases

The least squares criterion almost universally used in statistics, and in
this program as well, 1s very sensitive to extreme cases. In much real data,
moreover, the extreme cases are likely to involve either errors of measurement
or conceptual problems. In any case, we may not want our findings to be domin-
ated by a few cases, or to face the likelihood that another sample would produce
widely different results because of them. One can use the recode capability ei-
ther to trumncate extreme cases or to give them a zero value on the filter vari-
able so they will be excluded. However, this requires defining extreme cases un-
lformly regardless of their situatioms. In the population as a whole, a house
value greater than $75,000 may not be extreme, but among lower income families

where the head is less than 65 years old, such a value might well be extreme.

lOne estimates the expected values in the subcells as follows: Take the
deviations of the means by age or race from the grand mean as estimates of age

or race effects. TFor any subcell, add the appronriate age and race effect to
the overall mean to estimate that subcell mean.
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Figure 6a

Proportion of Husbands Approving of Mothers' Working*
(For all 1640 married heads of families)

All Husbands:

33% approved

30% of cases 70% of cases

Husbands Husbands
Aged 55 Younger
or Older than 55
22 37
27% 3% 63% %
Whites Nonwhites Whites Nonwhites
19 47 35 54
437 cases 47 cases 1031 cases 125 cases
*
The question was: "Suppose a family has children but they are all in

school--would you say it is a good thing for the wife to take a job
or a bad thing or what? Source: Morgan et al. Productive Americans,

p- 330.
Figure 6b Figure 6c
Deviations from Weighted Expected Deviations from Unweighted
Values Expected Values
Nenwhite White Nonwhite White
Youth 54-56=-12 35-34=+1 | 37 54-56=-2 35-33=+2 45
0ld 47-41=+6 19-19=0 22 47-44=+43 19-21=-2 33

52 30 33 50 27 39
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The user defines "extreme' in terms of the number of standard deviations
from the mean in either direction, where the mean and standard deviation are
those for the group in question. If the identification numbers of the extreme
cases are needed in order to look them up, that variable must be read in with
the other data, and its ''variable number" specified on the set-up forms:

Extreme cases are dealt with in two stages. Initially, the entire data
set is read and recoded (only cases filtered with the global filter are excluded).
The mean and standard deviation are calculated on the dependent variable for the
sample, and any cases lying outside of §'t no, where n is specified by the user,
is considered an outlier. These cases may be removed from the data, or simply
cause a warning to be printed. At this stage, one would hope to find the gross
errors in the data.

Subsequently, extreme cases are defined by the mean and standard deviation
of each group as it is being split. These outliers may be removed before making
the split. After each group, including the first, has been searched and the best
split decided, the extreme cases are located and removed so that they do not ap-
peaf in the two resulting subgroups. Note that the data given for each group are
before the extreme cases in that group are removed. This allows extreme cases
to affect one split before they are taken out, and to affect the total sum of
squares and hence the actual value of the split reducibility criterion. This is
unlikely to be a problem, except at the beginning, and the extreme cases for the
full sample could be taken out by the filter anyway.

Experimentation with this feature on a regression analysis of house value
on income, throwing out cases more than five standard deviations from each group
mean, showed that twelve cases were thrown out, in four different places, and the
resulting tree was different--at the third split on one branch and the fourth
split on the other. The results were, however, very much the same as when we
truncated house value at the beginning.

Since the purpose is to eliminate the rare extreme cases, nc more than
twenty-five cases can be eliminated from any group, and if more are eligible,
only the first twenty-five encountered will be eliminated. However, the others
would almost surely be eliminated from the two subsequent subgroups before they
were split (but after the split had been selected).l

This feature could be used for cleaning data of errors, in an effective but
biased way (increasing the apparent fraction of the variance explained). Or omne

could isolate small groups of deviates for special analysis.

lThis does not apply to the initial outliers treatment.
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2.9 Multi-stage Processing

AID3 operates in three modes: input, compute, and output. The input mode
is executed automatically at the beginning and again after an output mede. How-
ever, the user specifies compute and ocutput commands. By not specifying the out-
put command, once the partitioning process has stopped the user may re-define
certain parameters (e.g., maximum number of splits, symmetry) as well as defining
forced splits and continue the partitioning under the new definitions. This type
of user control would be most useful in an interactive system, but it may be use-
ful when the analyst has scme concept as to the structure of the partitioning
process. For example, it might be used in conjunction with ranking to allow

greatex control over the algorithm.1

lSee section 2.6.2.3.
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1]
Input Features

This chapter details the requirements and options for the input data file.
The input setup, i.e., parameter cards, is described in Appendix ITII. The reader

. 1
is referred to other publications for more extensive treatment of research uses.

3.1 Data Structure

The program assumes a rectangular data structure: each logical record is
one data observation containing all variables to be transmitted to the program,
plus any other variables which may also be contained on the file.

This file may or may not be pre-sorted on one or more variables used as
key3.2 Pre—sorting requires a separate job-step using a sort-merge program, but
is only necessary if the configuration option {(section 2.2) is used.

The data file is read in integer fields. Scale factors are provided for
the dependent variable, covarlate, residual, and predicted value. Predictors
must be integers in the range 0 < p < 31.

Since the recoding routines operate in integer mode, decimal places are
truncated, and variables must therefore be appropriately scaled before dividing
to obtain the desired accuracy (e.g., by multiplying by 1000).

Decimal points within data fields are not allowed, but may be bypassed in

the following manner: a 4-character field AB.C may be read as two fields, AB

1See Morgan and Sonquist (1963), Sonquist and Morgan (1964), Andrews, Mor-
gan and Sonquist (1967), Sonquist, Baker and Morgan (1969), Sonquist (1969), Son-
quist (1970), Sonquist (1970b).

2A parameter setting permits computation of "configuration" statistics for
sorted files. See section 2.2.
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and C and converted back by 10xAB+C.

3.1.1 Weighting the Data

In some sampling designs for collecting data, multi-stage probability de-
signs are used that require "weighting" the resulting observations. AID3 has
been designed teo accommodate those types of designs where the resulting "weight”
attached to each resulting observation is a positive integer. If the user des-

ignates one of his input variables as a "weight,"

the program treats the data as
though it were receiving multiple copies of each observation, the number of such
copies belng determined by the associated weight. Non-integral values of the
weight variable are not permitted. The range that may be taken on by a variable
designated as a weight is 1 < Vw < 999. However, users with weights larger than
99 and sample sizes of 1000 or more are cauticned that floating-point arithmetic
rounding errors may occur. Such users are encouraged to seek local individual
advice on rounding errors in sums of squares. Users with one- or two-digit

weights, dependent variables in the range 0 to 999,999 and samples not greater

than about 3000 should experience no difficulty with rounding problems.

3.1.2 Multiple Response Variables

AID3 will only accept single-valued variables. So-called "multiple-
response' variables must be read as separate variables and the recoding routine
used to create as many single-valued variables as desired from them. For in-
stance, if, in response to the question "Which magazines do you read regularly?"

a respondent says "Time, Life, and Progressive,

the analyst might wish to re-—
serve five or six 2-column fields in his file for up to that many answers, re-
cording as successive positive integers those mentioned (e.g., 01, 08, and 27

for those mentioned above). This might be coded 0108270000 if five fields were
regserved as a 2-digit "multiple response" variable. If this configuration is to
be used in an analysis using AID3, then the analyst would have to create cone or
more variables each of which has a single value (e.g., 1 if person reads any mag-

azines of a certain type, 0 if not).

3.1.3 Scale Factors

Although all variables must be supplied to the program in integer form us-
ing implied decimal places, it may be desirable to shift decimal points on the
dependent variable and the covariate for readability and compatibility with other

program output. This is true also if residuals are computed for output. Con-
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sequently, input scale factors have been provided for the dependent variable and
the covariate. The user simply indicates in "powers of ten" notation where he
wishes the program to place a decimal point for that variable. By using a posi-
tive scale factor, the decimal point is moved to the right by the number of
Places indicated. A negative scale factor causes it to be moved to the left.
For example, 1if the integer field supplied as the dependent varilable has three
implied decimal places, the user may supply an assoclated scale factor of -3,
causing the variable to be multiplied by 10™ 3, or 1/1000 and be properly scaled
and rounded.

The use of an appropriate output scale factor causes the desired number of
significant digits to be retalned during the computation of residuals. Gener-
ally two mo;e decimal places than used on input are sufficient for accuracy in
generating residuals. If the dependent variable is dichotomous (one or zero),

the user may wish to round these residuals back to either 1, 0 or -1, however.

3.2 OSIRIS vs Formatted Data Files

Input data files may be described with an OSIRIS dictionary or with a For-
tran IV format statement.

For data sets without a dictionary, up to three cards of format information
must be supplied.l The format statement describes an input (or output) data
case. All variables transmitted to the program from the data file, whether used
in the analysis or not, must have a format code or field descriptor (e.g., I10).
The transmitted or input variables shculd be in integer mode (non-integer vari-
ables may be transmitted if they are only to be carried along, i.e., not used in
the analysis, and later outputted in a formatted residual file), The variables
are read in the order listed on the input variable list card.2 In addition,
field descriptors for each variable created during execution, i.e., with the in-
ternal recode or the residual options, must also be supplied if a formatted out-
put file is requested. These "output'" variable fields will naturally follow the
"input" fields.

The OSIRIS multivariate recode, bad data option, and global filter cannot
be used with formatted data files.

A detailed account of OSIRIS dictionary and data files may be found in

lSee the IBM System/360 and System/370 FORTRAN IV Language Manual for in-
formation on formats.

2See. Appendix 1II1 and the OSIRIS/40 User's Manual for a description of var-
iable list cards.
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Appendix D of the OSIRIS/40 CSF User's Manual.

3.3 Recoding

It 18 recognized that users of complex statistical programs often need a
built-in capability for transforming their variables at the time a statistical
run is made. This has been found to be particularly true in the case of research
tasks to which AID is frequently addressed. Predictor variables typically in-
volve nominal scales (classifications) which reflect several dimensions and
should be converted into separate dichotomies, as well as continuous variables
which must be converted into sets of ordered classifications to be used as AID
predictor varlables. Also, AID users typlcally wish to generate interactiom
terms for later use in a Multiple Classification Analysis.l In addition, if dis-
tributions are skewed, dependent variables may need transformations using square
roots or logarithms. Users may wish to locate and re-assign missing values, the
assignments sometimes belng made on a probability basis. Users may wish to ex-
clude certain observations from their analysis. The reasons for exclusion may
include the presence of missing values of the dependent variable or covariate,
the analyst's desire to analyze only a subset of his data, or the presence of
some observations which have so much missing information that they must be ex-
cluded from the analysis. Or extreme values of the dependent variable may be
reduced to some limited value.

AID3 provides capabilities for accomplishing these tasks of recocding and
selection of subsets of observations. A powerful, newly-developed recoding lan-
guage 1s appended to the input section of the program, permitting the user to
generate almost any type of new variable he chooses.2

The recoding control language is actually a kind of special purpose pro-
gramming language; that is, it operates sequentially. The user submits a series
of instructions which are executed in order. Execution is initiated once for
each observation in the user's input data file. Each instruction consists of a
logical clause, an operatlonal clause, or both.

A logical clause is a simple proposition about the arithmetic relaticnship
(equality, inequality, larger than, etc.) between two input variables or between

a variable and one or more constants. When values of the variables are supplied

1See Sonquist (1970a).

2A complete description of the AID3 internal recode including examples 1is
given in Appendix II.
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from an observation that has been read in and altered as desired by any preced-

"value." It is either "true"

ing computation this proposition acquires a defined
or "false" for the values given. This result is then recorded as the value of a
"truth switch.” Any number of logical clauses may be concatenated to form a com-
pound logical clause.

Similarly, any number of operational clauses can be concatenated to form a
block of ordered computational instructicns. These instructions are used to es-
téblish values for new (or old) variables, and to perform arithmetic operations.
In addition, one instruction, GO TO, enables the user to control the sequence of
computation any way he wishes. In a block of contiguous operational clauses, in-
dividual instructions are always executed in the order submitted, except where
the sequence is altered by execution of a GO TO command. A print instruction
PRNT allows the user to look at 1 or 2 variables.

Logical control over actual execution of the recoding instructions is ac-
complished by use of the "truth switch." When the recoding routine starts it ex-
ecutes operational clauses until it encounters a logical clause. When it encoun-
ters the beginning of a logical clause, it determines whether the proposition re-
presented by the clause is true or false and records the results in the truth
switch. If the following clause is also a logical clasuse, it is concatenated
with the results of the previous one using the Boclean operator, and a new value
for the truth switch is computed. Other logical clauses immediately following
are treated similarly. On the other hand, if, after encountering the beginning
of a logical clause, the next instruction is found to be an operational command,
the truth switch is interrogated to determine whether the operational clause
should, in fact, be executed.

If the truth switch is ''true,” then execution of the operational clause is
initiated, and all successive operational clauses are also executed. Then when
the beginning of the next logical clause is encountered, the program returns to
logical mode and starts computing a new value for the truth switch. However, if
the truth switch is '"false' when an operaticnal clause is encountered, the oper-
ational clause is not executed nor are any other operational clauses that may be
concatenated to it; the program does nothing until it encounters the next logical
clause. What it does then depends on the type of logical clause it finds.

Logical clauses are of two types—-"initial" and ''subsequent.' A subsequent
clause cannot act as the "beginning'" of a logical clause, either single or com-
pound. Upon encountering a subsequent clause not concatenated to an initial
clause, the program simply returns to logical mode, but it does not evaluate this

clause and hence a new value for the truth switch is not computed. The program
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is now in "limbo'" since a return to logical mode also means that no further op-
erational clauses can be executed until a new value for the truth switch has been
established. Yet this cannot happen until the program encounters an "initial"
clause and has evaluated it, whereupon the whole logical process is re-initiated
from scratch. As a result, encountering a "subsequent” clause after computation
simply turns off all activity until a subsequent '"initial" clause starts it again.

This organization permits the user to write down a set of conditions (com-
pound logical clause) under which a specified block of computation is to be done.
He then simply writes the block of computations. If the conditions are not ful~
filled the computation is not performed. He may then write an alternative set of
conditions and specify a second alternative computational block. If the first
set of conditions is "true" for a given observation and the second set is

"false,"

the first block of computations is performed and the second suppressed.
(If both conditions are true then both blocks of computations are executed. If
neither, then there is no computation.) Thus, alternatives can be set up to ac-
complish the various kinds of assignments that are to be made during the recoding
process.

Provision is made for the user to supply a residual, or "alternative" con-
dition which corresponds to a "none of the above" condition (i.e., true if and
only if previous conditions were all false), completing the logical capability.

The sixteen Boolean operators that are permitted for concatenating logical

" " nn 17"

clauses include "and," "or," and "exclusive or, not,” and "implication" as well
as all of the less well known operators. The arithmetic operations that can be
performed include establishing a value for a variable, all four of the elementary
arithmetic operations, as well as square root, logarithmic, modulo and arcsine
functions, and the generation of random numbers. The relational operators in-
clude less than, greater than, equality or inequality and membership in a closed
interval. For error reduction and simplicity, all operations are integer, im-
plied decimal points being assumed in the input. Four-digit statement labels and
the GO TO operation provide complete user coutrol over computational sequences.

To facilitate scophisticated use, a simple form of indirect referencing of
input variables is provided, enabling user-written subroutines which can be in-
serted and applied to several variables as desired, as well as facilitating re-
petitive operations. .

Instead of eliminating cases with extreme values on the dependent variable,
one can truncate them, converting all values larger than some amount to be equal
to that amount, or cowbine several items (sum, ratio, etc.) into a new variable

and then truncate it. Since this is done case-by-case as the data are read in,
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one cannot calculate within this program the distribution of a new variable and
then decide how to truncate ie.t

Given the earlier warning about maintalning the order of predictors in or-
der to reduce the possibility of idiosynératic splits, it may be necessary either
to alter the scale value of the 0 or the missing information code, especially if
they are at the wrong end of a scéle; or a set of categories which do not form
a scale can be converted into a set of dichotomies. Unless one is willing to as-
sume that a variable such as religious preference or occupatien forms an ordinal
scale, it is advisable to convert it to a set of dichotomies, one per class.

Another warning: Complex recoding is easily done incorrectly, and a sub-
stantial analysis can be done before one discovers the error. The usual safe-
guards against incorrect specifications do not operate in this program. The best
hedge against expensive mistakes is to have a small data-tape like the main one
but with only 25 or 100 cases with a listing available of all the data on those
cases. One can then do the analysis with these few cases, which takes very 1lit-
tle computer time, and make sure all the newly created variables and filtering
have been done correctly.

The same recoding capacity is available during each input stage of
a multistage run, and there are several recoding possibilities that exist before
doing a second or later-stage analysis. One can take the residuals from a first
analysis (after taking account of background factors) and transform or truncate
them to make a better dependent variable for use in the next analysis. Or they
can be converted to a set of categories and used as a predictor im a second an-
alysis as in studies of regression to normalcy; or one can take the expected val-
ues (means of final subgroups), convert them to a set of categories, and use this
as one of the predictors in a second analysis. This is an application of the
principle of two stage least squares, where the expected values are considered
freer of measurement error and provide a less biased estimate of the effect
sought. Or one can take the actual identification number of a group (only some
of which remain) and transmute that into a set of categories which produce a new
predictor, namely the final groups identified in the first run. Of course the
second-stage analysis would be very likely to split on that predictor moat often
(though not necessarily), and one could assign it a low or zero rank to suppress
it altogecher (see Section 2.6.2) in the second analysis. This makes it avail-
able for cobservation but allows other predictors to make the splits. Or one

could use the group numbers to generate a filter variable to select only certain

lAn alternative method is to allow the program to throw out extreme cases
in each parent group; see Section 2.8.
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. .1
groups to use in a second analysis.

3.4 Culling the Data

Several methods for eliminating or subsetting the data are available to the
user. If a residual file is to be generated, any data cases eliminated from the
analysis step will be outputted with missing data values gemerated for the resid-
ual, predicted value, and group number. The exception to this is, no observation
will be outputted for data eliminated with a global filter or the bad data op-

tions.

3.4.1 Bad Data Treatment

With OSIRIS dictionary defined data sets, the standard bad data option is
available: eliminate the case; substitute a missing data value; or terminate the
run, With formatted data sets, records which cause a reading error are ignored.

Cases discarded as bad data are not outputted on the residual file.

3.4.2 Missing Data on the Dependent Variable

Cases which have missing data codes for the dependent variable may be elim-
inated from the analysis (see Appendix C of the OSIRIS/4Q User's Manual). This
option may be used with all data files, however, missing data are not defined for

formatted input variables.

3.4.3 1llegal Predictor Values

The user specifies a maximum allowable code for each predictor. Any pre-
dictor value greater than the specified maximum will be eliminated from the an-

alysis,

3.4.4 Filters

The OSIRIS global and local filters are described in Appendix H of the
OSIRIS/40 User's Manual. The global filter may only be used with OSIRIS data
files.

The program also provides for the optional interrogation of a subset selec-
tor variable. Since the decision to include or exclude a given observation is

made after the recoding routine operates on that observation, the analyst can

1But one would probably want to see the first analysis results before de-
ciding which groups to use in the second analysis to save some elaborate recoding.
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simply use his first few recoding instructions to generate a new varlable accord-~
ing to whatever specifications he wishes, indicating what classes of observations
to include or exclude. He then designates this as the subset gelector variable,
If the value of this selector variable 1s zero when interrogated after the re-

coding, the entire observation is simply excluded from input.

3.4.5 Outliers

The mean and standard deviation of the dependent variable are calculated on
the sample after global filtering and elimination of bad data. Any cases lying
outside n standard deviations from the mean (n specified) will cause a warning

message to be printed. These cases may also be excluded from the analysis.

lSee section 2.8.
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Vv
Interpretation of Output

4.1 Basic Output and Notation

Qutput from AID3 is generated during each of the three control modes. Gen-
eral sample statistics are printed during the input mode and include the optional
1-way analysis of variance on the predictor configuration. Also, data cases ex-
cluded from the analysis will be outputted onto the residual file.

During execution of the compute mode, a record of the partitioning process
including statistics on the parent group may be printed (i.e., the trace). Groups
which cannot be gplit will be outputted onto the residual file,

During the output mode, a l-way analysis of variance is computed on the
final groups. Groups which have not been split are considered final and output-
ted onto the residual file. Summary tables are then generated.

Data is input to the program after global filtering or exclusion of cases
using the bad data option. These input cases constitute the sample. TFor each
analysis packet, the data are culled using local filters, missing data options,
etc. All formulas pertain to this culled sample1 and conform to the following

basic notation:

= weight value

= unweighted value of the dependent variable

Y = wY' - = weighted Y value
Y2 = wY'2 = weighted Y-squared value

= wX' = weighted value of the covariate
X2 = wx'z = weighted X-squared value

YX = wY'X' = weighted cross product (also denoted Z)

lThe exception to this is the mean and standard deviation of the dependent
variable calculated on the full sample and used to calculate the initial bound-
aries defining an outlier. See section 3.4.5.
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4.2 Initial Statistics

The program lists the total number of cases read, how many cases were ex—
cluded, and the number of cases used in the analysis. These remaining cases make
up the total sample for the analysis packet and are therefore the first group to

be split. Totals for the sample are:

N = Total number of observations in the sample
. 1
W o= z w_ = gum of weights
o
a=1
_ W
MW—WN
N
Y = )w Y = sumof Y
a o
o=1

N
2
" = E w_ Y = sum of Y-squared
am1 @@

Y = E% = mean of the dependent variable

TSS = 8§ = I(Y - Y)z

GY = variance of Y
N
IX = z w X' = sum of X
a ‘o
a=1
N
ZX'2 = z W X'2 = sum of X-squared
=la
X = T = mean of the covariate
=2
: 02 = (X - _X) = variance of X
X MW
b SEY =Y X -X) slope of Y on X.

y.X Z(x_}—(')z

lIf W is small, say W < 50, and the run is unweighted, then it may be ad-

visable to correct for small sample sizes and aadj = N/{N-1) where N is the

number of observations over which summation has taken place.
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4.3 Trace

Trace statistics include parent group as well as resultant group statistics
for each possible partition, The parent group totals

N, W, IY, IY’, IX, IX°, Iz, SS

correspond to the quantities given 1n the preceding section for the sample, but
are summed only over the parent group.
For each predictor, the non-empty classes are listed in the order in which

the tentative partitions are made. 1If classes 53,1,4,2,6 appear, then

BETWEEN 4
AND 2

denote the partition results in one group with classes (5,1,4) and the other with

classes (2,6). The statistics

N, W, Y, 02 X, b (slope)

02
Y’ X’

are given for both of the twe resulting groups as well as the between sum of

squares (BSS) corresponding to the split. If L1 and L2 are the group numbers for

the children, then formulas for the slope and BSS terms arel:

(1) Means Analysis

b undefined
=2 =2 —2
BSS = leYLl + WLZYLZ - WY

(2) Regression Analysis

N.
1 _ _
El Gy = ¥ x, - %)
p =& 5 = pooled slope, i=L1l, L2
Z:L (x - Xi)z
a=1

lSee section 2.3 for the derivationms.
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2
N%l _ -—:j
_ r-Y) &-X)
=2 2 =2 L1 1
BSS = le YLl + sz YL2 -WY + NLl
- 2
I - X1
2
NLa N B 3
Z(y—YLZ) (x - X ,) P -0 x-X)
- < —
Z(x-XLZ [ &x-x
(3) Slopes Analysis
M, n
3 _
R
b _ =1 a=1 :
Z z (xka - Xk)

= average slope of group i for classes k=l,...,Mj of predictor j,

i=Ll, L2

NOTE: There is a different average slope of group i for each predictor.
2
M nk sz nk
Z z Opa = Y K~ % E L O m 9 &g - %)
k=1 o= k=1 a=1
BSS = M + v o
1, "k , 2, M
— 3 = .2
P oGy, - % Z I & -X)
k=1 o=1 o Mk k=1 a=1 ko T M
Mj nk B 5
[;El E (yka - Yk) (xku - x;z]
= a=1
Mj nk
= .2
Z (xka - Xk)

k=1 a1

Also note that the focus is on the explanation of the sample variance, not

The searching operations make the specification of de-

that of the populaticn.

grees of freedom necessary for extensions to the population difficult.

1See Lansing and Morgan (1971), pp. 304-306, or Snedecor and Cochran (1956),

p. 274, or Anderson and Bancroft (1952), p. 327.
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The user may suppress any or all of the trace. The options are:

(1) Suppress the entire trace;

(2) Print only parent group statistics and the best eligible
split on each predictor;

(3) Print parent group statistics and all eligible splits on
each predictor;

(4) Same as (3) but include partitions which do not explain
sufficient variation, i.e. , the BSS does not meet the
reducibility criterion;

(5) Same as {3) but include partitions whose resulting groups do
not meet the minimum group size criterion;

(6) Print the entire trace.

Option #5 is recommended if some minimum group size is used because splits
with BSS large enough to qualify but splitting off very few cases will then be
visible even if the split is not made, warning rhe user of extreme case problems.

With use of the lookahead option, option #4 or #6 should be used here since
an actual split may be made even though its BSS does not qualify in cases where
it is optimal when combined with one or two subsequent splits.

Option {#6 is often useful, however, in allowing one to force the tree one
split further beyond any final group, or to see the actual effect (not just the

power) of some predictor on each of the final groups.

4.4 Final Tables

One of the design objectives in this version of AID was improvement of the
form in which information was presented to the analyst. In previous versions of
the program much of the useful information was scattered throughout the trace of
the partitioning process. In the present version this detail has been collected
and placed in several tables specifically geared to the decisions the analyst
must make about the explanatory power of his predictors and their effect profiles
in various parts of the sample. The analyst uses information about explanatory
power and its changes throughout the partitioning process to make judgements
about the presence of interaction effects. He uses effect profiles in a similar
fashion.l

The final table printed as part of the basic output is an analysis of var-
iance table over the final groups generated by AID. The within- between- and

total sums of squares are presented, together with the proportion of variation

1For a discussion of display techniques see Sonquist (1969) and Sonquist
(1970a), (1970b).
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"explained" by the entire branching process.l (Tables 2 and 3 give the terms for
covariate and means analyses respectively.) The total proportion of variation

explained is

£ BSS,
i

L ®, where BSS, is the between sum of squares term

TSS for the appropriate analysis type (defined in
section 4.3) resulting from the partition of
group i, i.e., the reduction in unexplained var-
iation from splitting group i,

In addition, there are four types of summary tables which may be printed.

1. GROUP SUMMARY TABLE: Number of groups and number of final groups,
followed by a recapitulation of the actual splits made and the frac-
tion of the original total variance explained by each split. Branch-
ing diagrams can be made expeditiously using just this table.

2.(a) 100%*BSS/TSS TABLE FOR N-STEP LOOKAHEAD: For each predictor used for
the first split for each group, the explanatory power of that plus
one or two more splits. Tagged with < if lesa than N+1 splits
were made (because of other criteria). Replaced with **** if g re-
sultant group too small. If a minimum group size rule excludes a
particular division by a predictor on a group, but another division
on the same predictor and group is allowable, the "second best"
split's BSS/TSS will appear.

(b) 100*BSS/TSS TABLE FOR 0-STEP LOOKAHEAD: Gives the results of a sin-
gle best eligible split on each predictor for each group. Only el-
igible splits are reported as with previous table even if 'second
best,'" and replaced by **** if a resultant group did not contain
enough cases.

(¢) 100%*BSS/TSS TABLE FOR O-STEP LOOKAHEAD, MAXIMUM BSS REGARDLESS OF
ELIGIBILITY: Gives the power of the best split for each predictor
with each group, except the final groups, even if group size or cri-
terion makes that an ineligible split. Provides a warning of ex-
treme cases even if minimum group size prohibits their isolation.

3. PROFILE OF CLASS MEANS AND SLOPES: Gives means of Y (and of X, and
slopes if covariance), and N for each predictor subclass for each
group. Useful for getting detailed profiles, since the trace tables
give only the two pooled groups for each split. Arranged by pre-
dictors and for each predictor gives the ETA for its full subclass
detail over the whole sample, that is, the explanatory power of that
predictor over the whole sample using all its subclasses.

4. PREDICTOR SUMMARY TABLE: Gives more detail on each subclass of each
predictor cver each subgroup, including ETA, ETA (NSTEP), and ETA(Q).

lThis may be compared with the configuration analysis of variance, since
the latter represents the total variation that could be explained by all main ef-
fects and interactions for the given set of predictors and as such is the upper
bound on explained variation (see Lubin and Osburn, 1957).
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The first uses all the detaill, the second is the power of the binary
splits, and the third of the first binary split.

The least useful is the Predictor Summary Table, most of which is elsewhere

in the output. If no lookahead is used, and a small minimum group size, only one

of the BSS/TSS tables is needed. The group summary table is essential and the

profile of class means and slopes very useful.

4.4.1 Group Summary Table

The Group Summary Table provides a record of the actual partiticns that

took place during the analysis and summarizes the statistical effects of the co-

variate.

5.
6.

The following quantities are printed for each group:

Group number and children into which the current group is split.

Predictor number, name and class identifiers forming the basis for
the split.

Percentage of the total variation explained by the split and percentage
of the total variation remaining in this group: BSS/TSS and SS/TSS.

Number cf observations in this group; sum of weights in group.
Statistics for the dependent variable; Y and 03 .

Statistics for the covariate, where applicable;

X, 0, ., b a, a(norm)

x' Txy' Ty.x’
{where by_x is the pooled or average slope depending on whether a Re-

gression or Slopes—only analysis was used-—see section 4.3)

=Z(y-?L> x - X))

r
Xy — —
/T - Y2 (= - X)?

= the correlation coefficient between x and y

a = YL - beL s

a(norm) = Y

L~ bL (XL - Xl) , where L denotes the current group and

'ii is the original sample mean., Hence a(norm) is the expected value of

Y for a member of the group whose X-value is equal to the overall sam-
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ple mean; it is a measure of the level of the subgroup regression line.

4.4,2 BSS/TSS Tables

Three BSS tables are available and may be printed when the BSS options are
activated and a lookahead is used. The lookahead BSS table shows the explanatory
power of the groups resulting from the partirioning of the parent group and the
successive lookahead results. For instance, if a two-step lookahead is used,
creating a total of four groups, the BSS shown in the table for the i-th predic-
tor for this parent group is the explanatory power of all four of the groups re-
sulting from the lookahead.

The entries in the lookahead BSS/TSS table are

BSSi.m
E—J— x 100 = xx.x

for the best partition on each predictor in each group. In the formula above the
references are to the i-th predictor for the j~th parent group using a lookahead
of length m. The partition may use other variables out in the lookahead splits
after the maximizing action taken by the lookahead is attached to that variable
forming the imitial split in the parent group. Fach variable has the maximum BSS
assoclated with its initial use attached to it.

In each column of the table (one column per parent group) a flag appears if
the partition was eventually based on less than the maximum lookahead permitted.
Final groups are flagged alsc. Each entry is replaced with asterisks if that
predictor was constant in that group, and it is replaced with a zero if the cor-
responding partition had been too small to meet the minimum group size require-
ment. Thus, the nonzero elements of the table are all valid, though possibly
very small indications of explanatory power. Each variable has the maximum el-
igible BSS associated with its initial use attached to it. If the STARTING TREE
option is specified, the entries in the BSS table may not correspond to the ac-
tual BSS's from pre-specified splits, since the former are governed by the FREE/
MONOTONLIC predictor parameter and are based on a O-step lookahead. Should the
ordering of classes differ from that in the trace, then the entry in the table is
based on that of the trace.

The BSS/TSS table with no lookahead corresponds to the lookahead table with
m=0, the explanatory power of each predictor in the parent group.

The BSS/TSS table regardless of eligibility contains the maximum BSS/TSS

regardless whether that BSS was obtained from an eligible split.
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4.4.3 Profile of Class Means and Slopes

The means/slopes profile is broken down into separate tables, one for each

predictor. The mean of the dependent variable (Y) is shown for every class of

every predictor in every group, together with the number of observations upon

which that mean 1is based.

In the case of a Regression/Slopes analysis, the mean of the covariate (X)

is also given for each class in addition to the slope for that class. For Group

1 only (whole sample) ETA is also prinﬁed, showing the explanatory power of the

full detail of each predictor.

, for classes k = 1, ... , M,

TSS

4.4.4 Predictor Summary Table

of predictor j. J

Data for each predictor’'s behavior during the partitioning process are col-

lected and organized in this table. One set of statistics for the predictor as

it behaves in each group is printed. Data are presented for each class of the

predictor.

For each class the folleowing statistics are printed:

1. Number of observations and sum of weights for that class.

2., The sum of weights expressed as a percent of that group and a percent

of the total sample.

3. The sum of Y (IY); and this sum expressed as a proportion of the total
LY for the sample and of the total (ZY) for the parent group.

4. The mean and variance of ¥ Cf and Gi).

5. The sum of X (EZX), and this sum expressed as a proportion of the total
IX for the sample and of the total X for the parent group.

6. The mean and variance of X (i and 03).

In addition, three summary statistics are printed, showing the explanatory

power of the predictor in the group in question.

1. ETA-—the proportion of variation that can be explained by this predic-
tor in this proup, using all the classes of this predictor. This is

the variation in this group that would be explained if a one-way anal-
ysis of variance were run on the observations in this parent group, us-
ing as grouping all of the classes of the predictor in question.

ETA = BSS_/SS,
1 1

for the i~th parent group, where
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Ny
5 .2
ss, =7} -1
and
"
=2 -2
BSS, =) W Y - W Y
i kel k "k i 4

where the summarization is over the Mj classes of predictor j in the
i-th group. It 1is the square of what“is called the correlation ratio
or n.

2. ETA (LOOKAHEAD)--The proportion of variation that can be explained by
the specified lookahead groups based on a partition of the parent group
using this predictor. The computation is the same as ETA, above, but
the summation is over the N-step lookahead groups created from binary
splits instead of the k classes of one predictor, i.e., summed over N+1
groups.

ETA (n) = BSSi n/SS

i i

for a lookahead of length n using parent group i and variable j as the
initial partitioning variable for the parent group.

3. ETA (NO LOOKAHEAD)--The proportion of variation that can be explained
by a partition of the parent group using this predictor summed over the
two resulting groups. This is the proportion explainablé by the single
split, itself.

In addition, components of sums of squares of Y about the fitted regression

lines are printed.l These components are described in Table 2. They provide an

analysis of covariance cver the subclasses of each predictor separately, for each

group created.

4,5 Residual Files

This version of AID can compute residuals, and predicted values, and can
tag each observation with the group number of the final group into which it was
placed. 1In addition, all input and generated variables can be transferred to the
file containing the residuals, predicted valués and group tags. All of these
quantities are incorporated into the input data vector for each observation ini-
tially received by the program and are transferred along with this vector into a
new data file. Residuals and predicted values may be appropriately scaled by
separate output scale factors, and their field widths must be specified for the

output file. The final group number is always put out as a 3-column field, hence

lSee Walker and Lev (1953), p. 396, and Brownlee (1965), p. 378.



75

no field width specification is necessary.

The output file may bg generated as a standard OSIRIS data file with a dic-
tionary or as a format described file. 1In the latter case, output fields for all
generated variables must have been included (following input fields) in the input
FORMAT cards: Generated variables are outputted in the order they appeared in
the parameter setup (Appendix III). A complete variable list is printed before
the analysis begins and the user would do well to try a test run to insure his
format fields correspond to the correct variables.

The scratch data file (ISRO1) used by the program is updated with all gen-
erated variables and used as the data file in subsequent analysis packets. This
allows the user to specify residuals without generating an output file.

Formulas used in calculating the residuals and predicted values are:

Means analysis: ? =Y,

for individual o as a member of final group 1i.
Slope or Regression analysis:

_ }')

Qa =a;* bi (xia i

i

R = ? - Y for individual o
[+ a a

in final group 1.

4.6 Structure of the Trees1

The results of the program can show a series of different characteristic
tree patterns. Each tree has sectilons that can be described as a combination of
two configurations, based on the useful convention of showing the group with the
highest mean as the uppermost branch. One may be termed a trunk-twig structure,
the other a trunk-branch structure.

The trunk-twig structure is a main branch from which small groups are split
off and are not themselves split again. This may take three forms: top-termin-
ation, bottom-termination, and alternating-termination. The top-termination
structure may be termed an "alternative advantage' model. Group B consists of
those observations possessing the "advantage" represented by that characteristic

which split group A into groups B and C. Once group B has been

1The following sections were extracted from the original monograph, The De-~

tection of Interaction Effects.
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TOP TERMINATION

BOTTOM TERMINATION

ALTERNATING TERMINATION
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established, 1t cannot be split further by the program.

The bottom-termination gtructure may be termed an "alternative disadvan-
tage' model, and is analogous. The possession of any one of a number of charac-
teristics is enocugh to prevent an observation from achieving a high value on the
dependent variable.

The interpretation of the alternating termination configuration is similar.
In all three types, the interpretation to be made depends on the characteristics
of the final groups themselves, especially on the number of observations in the
group, its variance, and whether or not there existed predictor variables which
"almost worked'" in the attempt made by the program to split it.

Another property of the tree is its symmetry or nonsymmetry in terms of the
extent to which the same variables are used in the splits on the various trunks.
Nonsymmetry implies interaction, 1.e., effects of combinations of factors. 1If a
variable is used on one of the trunks, and if it shows no actual or potential
utility in reducing predictive error in another trunk, then there is clear evi-
dence of an interaction effect between that variable and those used in the pre-
ceding splits. The utility of a predictor in reducing predictive error is eval-
uated by statistic (Bssmpr/TSS)i for each predictor at each branch in the tree.
This output is produced by the program and represents the proportion of the var-

iation in the group to which the predictor is being applied that would be ex~

plained if it were used in a binary split of that group.

Trees may, of course, be symmetrical with respect to the way in which top-
termination, bottom—termination and alternating-termination configurations appear
in the main trunks.

The trunk-branch structure is usually typical of the first few splits of

any tree. In this case, each group produced by a split is further subdivided.
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D
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A
F
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G

TRUNK-BRANCH STRUCTURE

Some of the early groups may remain unsplit. If this is so, then the most impor-
tant aspect of the interpretation of this structure has to do with the fact that
there remains within-group variation which can be explained. At each step, the
analytic question that should be asked is, "What are the reasons why there is as
much variation in each of the groups as there is?" This question will be dis-
cussed below in more detall.

A further property of each tree is the number of final groups that result
from the analysis. This is, of course, a function of the input sample size, the
statistical properties of the algorithm, and the relationships between the char-
acteristics of the predicter variables and the dependent variable.

Based on the present characteristics of the algorithm, we can distinguish
three types of final groups: small groups, explained groups, and unexplainable
groups. A small group is one containing too few observations to warrant an at-
tempt to split it. An explained group is over this minimum size, but has too
little variation in 1t (less than, say, 2 per cent of the original variation) to
warrant an attempted split, An unexplainable group is sufficiently large and
spread out, but no variable in the analysis is useful in reducing the unexplained
variation contained within it. Each tree will generally have some of each of the
three types. But the total number of final groups is heavily dependent on the

rules used to stép the splitting process.

4.7 The Behavior of the Variables in the Trees

The analysis of the behavior of the predictors and their relationship to

the dependent variable during the partitioning process can be approached through




a series of questions, asked with reference tc each partition.

4.7.1 Chance Factors

The first question is, "Given the minimum group size rule and split elig-
ibility rule used, what is the likelihood that this split occurred by chance?"
This problem may still occur even if the above-suggested rules have been used for
minimizing the probability of its happening. If a variable actually used in the
split is the only one which shows up as important, according to the criteria used,
then the probability of its predictive power being based largely on sampling var-
iability is relatively slight, unless it is an unconstrained variable with a
large number of classes. When several variables are almost equally good as pre-
dictors, in any given split, then the likelihood is greater that sampling vari-
ability has had a hand in selecting one, rather than another; as that variable
to be actually used in the split. The (BSS/TSS)i tabulation provides a guard
against basing an interpretation only on those variables actually based in the
partition process, since the explanatory power of the unused predictors is pre-
sented in all its detail.

The overall structure of the tree provides a clue as to the probability
that sampling variability is operating together with a skewed distribution.

In the case where the dependent variable is badly skewed and has a tall ex-
tending toward the right (positive skewness), a top-terminating trunk-twig struc-—
ture is likely to appear in several main branches of the tree. These terminal
groups will have large, positive means, and will contain few (1-5) observations.
Typically, they will result from splits on several different variables. Sooner
or later the program will find some predictor which enables it to split out these
extreme cases from the group in which they happen to be.

A careful re-reading of interviews may turn up a variable, certain values
of vhich most of these extreme cases will have in common. This variable may then
be inserted into a subsequent analysis. One may be reasonably confident that
these observations will then be placed together in one group via a split on this
variable. Good strategy would, therefore, dictate a preliminary investigation
of the skewnéss of the dépéndent variable before the main analysis starts.

One might construct a dummy variable which has the value one if an observa-
tion is out in the skew tail ‘and zero if it is not. A preliminary AID analysis,
using this as the dependent variable, together wi£h the predictors to be used in
the main analysis will provide information as to which classes of the sample are
out in the tail, rather than being in the main body of the distribution. It may

be that one set of wvariables will be found optimal to explain being out on the
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tail of a distribution. Another set miéht prove best for explaining overall var-
iation or variation in the main body of the destruction. This possibility would,
of course, be of considerable theoretical importance.

Of course this technique need not be confined to cobservations out in a skew
tail of the dependent variable distribution. For some analytic purpdses it may
be désirable to use this technique to determine what combination of variables are
associated with an observation's being, say, in the second quartile of the dis-
tribution, or less than some specified value.

It should be noted that a variable which i1s not skewed in the total sample,
may become skewed during the partitioning process., This cannot be caught in ad-
vance. Hence even when a preliminary investigation of skewness has been made,
the analyst should be on liis guard for the appearance of this particular trunk-
twig structure. A bottom-terminating trunk-twig structure with small terminal
groups would provide a signal for negative skewness. The provision for identi-

fying and tagging and/ox eliminating outliers should be of help here.

4.7.2 Conceptualization Problems

A second question that should be asked is, "Does this split reflect concep-
tualization problems in applying the framework of predictor variables to the sam—
rle, or sections of it?" A number of interpretation problems in the trees may
stem from measurement or coding errors, or from the use of variables that were
designed for other statistical purposes. This technique is at its best when the
predictors have a clear, uni-dimensicnal reference. We have found an example of
a conceptual problem that looked, initially, like a somewhat contradictory find-
ing, until coding decisions were uncovered which appeared to misclassify unedu-
cated people living on the fringes of citles of 50,000 and over, with respect to
the rural or urban nature of their surroundings. Indices having several compon-
ents also tend to behave in a somewhat peculiar fashion. Presumably, this is be-
cause the items in these indices, though related beth theoretically and statis-
tically, may affect the dependent variable in different ways, particularly if
some of them interact with other variables in the tree and others do not. Splits
involving such variables may or may not "make sense.' See Coombs (1964) for a
thorough discussion of scaling problems.

Perhaps the most important peint to be made here is that pfoblems like
these are often revealed only bj large standard errors that may accompany a mul-
tiple regression analysis. They tend to stand out quite clearly in the tree dis-

play of the AID results.




81

4.7.3 Manipulation of Variables

A further question which should be asked with reference to any given split
is, "Are there competing predictors correlated with the cne actually used in the
split? 1If so, does thelr explanatory power increase, decrease, or stay the same
in subsequent splits?" The legic to be employed here is developed extensively by
Hyman in his discussion of spuriousness, and in his presentation of M— and P-
type elaboration. He presents a formalization of the logic of examining the re-
lationship between two variables when a third factor is introduced. The two fac-
tors under examination are referred to as x and y, and the third is called t.
In our notation, x 1is the variable used to split group i into groups J and
k; y 1is the dependent variable, and t 18 multiple and consists of each of the
other predictors in the analysis. We are interested in the relationship between
variable t and variable vy, as represented by the statistics (BSS/TSS)i, (Bss/
TSS)j and (BSS/TSS)k for each predictor t. If, in addition, we consider whethexr
or not there is a logical, theoretical justification for a correlation between
x and t, and if so, whether x can be conceptualized as antecedent to t in

a causal chain, we have a systematic application of the analysis strategies of:

Interpretation (t is an intervening variable)
Explanation (t dis antecendent to x and is logically related to it)

Control for spuriousness (t is antecendent to x and cannot be relat-
ed logically to it)

4, Specification (t 1is neither antecedent to x nor subsequent to it,
but is logically related. Here x is a circumstance that affects the
extent to which t 1is related to y.)
The reader is referred to Hyman and to Blalock (1961) for the details of the log-
ic.

We note that we have reverted to a form of the.analysis question, ''Other
things being equal, how does x affect y?" but in a scmewhat different form.

We now have the question, '"When we extract variation associated wiéh predictor x,
how do the relationships between B1s Boy o veey tp and y change?"

In providing an answer to this question that is meaningful, the question of
the substitutability of variables in the analysis must be taken into considera-
tion. This is the problem of intercorrelations between the predictors.

Another consideration related to the above question is, how does one decide
whether to rank predictors, allowing some clearly exogenous or background vari-
ables to work first, and then asking whether certain intervening or attitudinal
or environmental variables add anything, or to pool the residuals after al-

lowing the background variables tc work, and running them against a new set of
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predictors? The first alternative allows the second set of varlables to operate
differently in different subgroups, i.e., allows for interaction effects between
the two sets of predictors. The second allows none, or allows only those bullt

into the analysis by including first-stage predictors also in the second stage.

The second optlon is alsc more economical of degrees of freedom, of course, and

may be necessary if the sample 1s only of middling size (1000 or so).

For example, one might, in explaining earnings, want to put education, age,
race, sex, farm background in a first analysis, and then go on, with or without
pooling, to introduce mobility, occupational choice, current environment, etc.
But even if one pooled residuals, one might want to reintroduce education and
race in the next stage, in case the effects of mobility are dependent on one's
education or race.

It is impossible here to consider all the problems associated with the re-
lationship between a variable and the concept(s} it purports to represent, but a
few points should be emphasized.

Some intercorrelations are built into the data by the coding process. Other
high correlations may result because two predictors may themselves be the results
of a third factor which may or may not be represented in the analysis by a vari-~
iable. Still others are there because things go tegether in the real world. But
it 1s on exactly this structure of relations that we are trying to get‘a grip.
What is required is a strategy for minimizing the interpretation problems.

One way to deal with this is to put in the most clearly exogenous, most or-
thogonal and uni-dimensioned variables into a first-stage analysis or ranked
highest, together with a relatively high reducibility criterion and fairly large
minimum group size, and then use the richer matrix of predictors for an analysis
of the residuals. Where a tight test is desired as to whether a variable which
is of considerable theoretical importance has effects, this variable may be held
out of the first-stage analysis and entered in the second stage to see whether it
enables the explanation of residual variance. If a low eligibility criterion is
used, the present algorithm will make a final sweep over all the final groups be-
fore dropping them from consideration, thus providing information on how all of
the predictors are distributed within each group. These distributions_can be used
to provide information as to whether the group occuples its present place because
of its actual pedigree or because of some other factor(s) correlated with the
ones used to form it.

Moreover, it would certainly be desirable to obtain information on the zero-
order correlations among the predictors in the sample. Since they are classifi-

cations, this is not easy. A complete set of bivariate frequency distributions
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provides a general impression. Further Improvements in the algorithm itself
should provide for a satisfactory method of computing the intercorrelation matrix
of predictors at each branch of the tree.

If there are some variables which, because of high intercorrelations or
low logical priorities, must be put into a second-stage analysis, one will not
know (and has decided not to ask) what their influence would have been in the
formation of the first-stage groups. The second stage, however, will show whether
or not thelr influence on the dependent variable has already been accounted for.
Re-introducing the first-stage variables into the second stage will also provide
an answer to the question of whether there is a small, but universal, effect
across all groups which will appear when they are pooled for the residual analy-
gis.

In some cases, the first-stage analysis will identify groups which are
clearly constrained in some special way, and explained so clearly that they real-
ly should be eliminated from the subsequent analysis.

Concentrating on explaining the level of the dependent variable may tend to
obscure other information contained in the tree which may be extremely important.
The homogeneity of the final groups, especially if some of them appear after only
a few splits, and are large in size, may be more interesting and important than
their average on the dependent variable. Since the program produces the standard
deviation as well as the mean of each group, one can examine the variance, or
relative variance of each final group. If any group has a larger variance than
the others, it raises the question of whether there is some other factor which
affects this group, or varies more over it, but which was not included in the
analysis.

The use of the tree strategy calls one's attention tc the possibility that
one or two variables may be sufficient for explaining the variation associated
with some of the observations, whereas, additional theoretical sophistication

may be fequired for an adequate explanation of the remainder of the sample.
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Appendix I

Recoding

This section contailns the detailed instructions for using the recoding rou-
tines that have been incorporated into AID. The recoding instructions consist of
a series of clauses. One or more clauses constitute an instruction. The instruc-
tions are executed once for each observation read by the program during the input.
They are executed in sequence, except as altered by GOTO instructions and those
that are skipped because of the operation of the logical clauses and the truth

switch. This is explained below.

A, Instruction Format

Each instruction consists of a statement label (optional) and one or two
clauses, There may be a relational clause and/or an operational clause. An op-
tional comments field is included with the statement but is mere%y printed on the
user's output, having no effect on the computations.

All four parts of a single statement are punched on a single IBM card.

(1) Statement Labels

A positive integer may be attached to a statement. This is ordinarily op-
tional and merely serves to identify the statement. It is required if the state-
ment is to be referenced by a GOTO instruction. Not every statement need have a
statement label and statement labels may be used in any order. A given positive

integer may not be used as the label for more than one statement.

(2) Relational Clauses

A relational clause consists of a logical tag and, depending on the tag, it
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may also have a test variable reference, a relational operator, and A or (A and B)
operands. If the logical tag used does not require the use of the remaining
fields, their contents will be ignored. If there is no logical tag, no test var-
iable mumber, no relational operator and no A and B operands, the instruction is
deemed to have no relational clause as part of it. 1If at least one of these
fields exists, blank tags, test variable references and relational operaters are
assumed to be the same as those in the immediately preceding logical clause.
(Note: A and B operands must always be supplied when needed.) This permits the
user to avoid excessive repetition in writing commands. If there is no logical
clause, the instruction is deemed to consist only of computation. Logical clauses
may be written without subsequent computational clauses, and thereby concatenated

into a compound logical expression. This compound expression is of the form:
, ((((A)op B)op Clop D) etec. etc.

The user may make use of this nesting in adapting the commands to construct an ex-
pression reflecting the logical structure of his problem. A compound logical ex-
pression must begin with an Initial Clause. This 1s discussed in detall below.

The testing part of the relational expression uses four fields, a test var-
iable reference, a relational operator and either one or two operands. The B op-
erand is used only for the IN or OUT relational operators. It is ignored other-
wise. When the logical clause is executed, the test 1s performed according to
the requirements of the tag and the relational operator. The current values of
the referenced variables are used. The result is a new value for the truth
pwitch (see below), which is dependent on the old truth switch value as well as
the test. The rules for referring to test variables and A and B operands are dis-
cussed below.

The test variable field may contain a test variable reference. This may be
direct or indirect, but it must be a reference to a variable, not a constant.

An A or B operand may refer either to a variable, directly or indirectly, or
it may contain a constant. Rules for forming A and B operands are discussed be-
low.

Any relational operator may be combined with any legitimate test variable
reference and any legitimate A (and, when appropriate, B) operand to form a test.
The test should be formed by the user only if the tag requires a rest-—and then

it must be present.

(3) Operational Clauses

An operational clause may or may not be present in a given statement. When
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present its form depends on the type of operation to be performed. TIf the oper-
ator used does not require certain of the available fields, they will simply be
ignored (see below). As with the logical clauses, the complete absence of all
values in any of the fields indicates the absence of the clause.

If at least one is present, the clause is deemed to exist. Missing values
of the Resultant Variable and the Control Operator are then supplied automatically
from the previous operational clause. Values for operands must always be supplied
if the operand is to be used. The Result Varilable, where required, must be a di-
rect or indirect variable reference. The C and D operands may be either direct
or indirect variable references or integer comnstants.

Figure A2.1 illustrates the format required.

B. The Interpreter and Executor

The instructions supplied by the user are interpreted and stored by ''the
interpreter." The executor is a two-state machine., It operates either in logi-
cal mode or in computational mode. It initiates execution of the instruction se-
quence supplied to it once for each data-unit read by the computer. It starts in
computation mode, executing operations in the order submitted by the user, except
where the sequence of computation is altered by the execution of a GOTO instruc-
tion. Computation is its ordinary mode of operation.

When any logical clause of any kind is encountered, the machine exits im-
mediately from computational mode and no further computational operations can be
executed until a return from logical mode has occurred.

When this exit from computational mode takes place the value of the mach-
ine's "truth switch" first becomes undefined. Then the machine reenters logical
mode and the only operation thaf can be executed is the evaluation of logical ex-
pressions and the establishment of a new value for the truth switch. When in log-
ical mode and with an undefined truth switch the only type of operation that can
be executed is one which can define a new value, either true or false, for the
truth switch. Then, after the truth switch has been defined an exit to computa-
tional mode is possible. This can occur when the truth switch has the value
"true” and a cémputational operation follows. Upon detecting this condition, the
machine reverts to computational mode and the computation is executed. If subse-~
quent instructions contain only computational clauses, the machine remainsg in com-
putational mode.

The truth switch can become defined only through assigoment or threough eval-

uvation of an Initial Clause. There are two logical constants (T, true, and F,



Figure A2.1

MULTIVARIATE RECODING FORM

Coder: Job:
Date: Data:
STATE~| LOG. TEST REL. A B RESULT CONTROL C D COMMENT
MENT TAG VAR, OPER. OPERAND COPERAND VAR. OPER. CPERAND OPERAND
NO. NQ. NO.
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1 T TRUNCATE
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=4 4 3
5 24 4
25 99 5
GE 100 6
3 IF v0020 IN 0 2
30 AND V021 Q 2 v0100 = 1
31 ALT = 0
4 IF Vo030 EQ 1
@R V0031 IN 2 g V0101 = 1
GOTO 100
IF V0040 EQ 1
AND V0041 IN 2 9 V0101 = 2
ALT 3
100 T
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false) which can be used to assign a value to the truth switch.

An Initial Clause is the first (and may be the only) part of a relational
propesition. In other words, a relational proposition must begin with an Initial
Clause or Assignment and may (or may not) be fellowed by one or more Subsequent
Clauses. An Initial Clause 1s always headed by the tag IF (if) or NIF (if not).
It is never headed by another type of tag. Subsequent Clauses are always headed
by one of the other types of tags (e.g., OR, NOR, EXOR, etc.}, and are never
headed by IF, NIF, T, or F. The truth switch acquires a defined value as soon as
an initial clause has been evaluated or it is assigned T or F. Its new value is
dependent only on the current operation, not upon past values. The new value is
established accordingly on the basis of the truth tables associated with IF, NIF,
T, or F (see Table A2.1),

Since the truth switch has a new value defined after the evaluation of the
Initial Clause, computational statements may be placed between the Initial and
Subsequent Clauses or between Subsequent Clauses. If such statements are encoun-
tered in logical mode when the value of the truth switch is T, the machine will
exit to computational mode and any number of logically consecutive statements can
be executed. However, if such computational statements are encountered when the
machine is in a logical mode, when the value of the truth switch is still F, then
the machine will remsin in logical mode. The computational statement(s) will then
be passed over and the machine will proceed to evaluate the next Subsequent Clause.
If, while in logical mcde and seeking a Subsequent Clause, the machine encounters
another Initial Clause, the truth switch will simply be reset according to the tag
associated with this new Initial Clause. Then the machine will proceed in logical
mode as above, again seeking a following Subsequent Clause or exiting to computa-
tional mode if the truth switch happens to be T when a computational statement is
encountered.

When In computation mode the only instructions the machine can execute are
another computation operation or the evaluation of an Assignment or Initial Clause,
the latter two causing a change to logical mode and immediate redefinition of the
truth switch, Encountering a Subsequent Clause when in computation mede also
causes an immediate exit to logical mode, but with the value of the truth swi;ch
undefined.

When in logical mode the machine can do nothing but evaluate an Initial
Clayse or amn Assignment, until its truth switch acquires a defined value. After
that, it can evaluate Subsequent Clauses and can exit to computational mode if a
computational instruction is encountered at the time the txuth switeh is T. 1If

the truth switch is defined but equals F, and the machime is in logical mode, it
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Table A2.1
Truth Tables for Boolean Operators
Test
0 1 0 1 0 1
1 0 1 0 Q 1 1
o] 0 v} 0 0 0 0
F AND NIMP ALSO
i 0 1 0 0 1 1
0 Q 1 0 1 0 1
BIF IF EXOR OR
L 0 1 0] 0 1 1
0 1 0 1 0 1 o]
NOR CONS NIF NBIF
1 0 1 0 0] 1 1
0 1 1 1 1 1 1
ALT IM@ NAND T
NOTE: The Test values appear across the top as indicated and the current

value of the truth switch appears at the left side.

The resulting

value of the truth switch appears in the body of the table.
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can only evaluate relational clauses, either Initial or Subsequent (all computa-
tional instructions being passed over and ignored). Note that Subsequent Clauses
which follow computation and which are not preceded by an Initial Clause can nev-

er be evaluated and that computation which follows them can never be executed.

(1) The Truth Switch

Computation is started with the truth switch equal to T. Then when the
first exit to logical mode occurs, the value of the truth switch becomes undefined.
Later, when an Initial Clause is evaluated or an Assignment takes place, the
truth switch acquires a defined value of T or F.

Each logical tag has associated with it a truth table for relating the cur-
rent value of the switch and the results of the current test to a new value for
the switch. Thus, when the machine is in logical mode and au expression is eval-
uvated (as we have seen expressions are not always evaluated), a new value for the
truth switch is defined. The truth tables for all of the logical tags were pre-
sented in Téble AZ.1.

(2) Llogical Tags

The truth switch and the truth value of the current test are used together
to establish a new value for the truth switch. The way in which these two quan-
tities are used together to establish this new value is determined by the logical
tag assoclated with the relational expressicn.

Each logical tag has associated with it a truth table (see Table A2.1). The
truth switch has a defined value either T(true) sometimes represented by a "1" or
F (false), sometimes represented by a "0." Similarly, the relational expression
has a value of true or false, depending on the values of the variables that are
supplied to it when the test is made. The new value of the truth switch is simply
obtained from the corresponding row and column of the appropriate truth table.

. 1
The tags correspond to the sixteen unique elementary Boolean operators.

They are:

1. T -- The Boolean constant, "true."

2. F -- The Boolean constant, "false." .

3. IF ~- A univariate operator dependent only on the value
of the test.

4. ALSO-- A univariate operator dependent only on the value
of the truth switch.

5. AND -- Corresponds to set intersection. True only if
both conditions are true.

1

Hohn, 1966.
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6. NAND-- The negative of AND. False only if both conditions
are true,

7. OR -—- Corresponds to set union, True if either or both
conditions are true.

8. NOR -- The negation of OR. True only if both conditions
are false.

9. NIF -—- "If not true that'"--the negation of IF, a univariate
operator, dependent only on the value of the test.
True only if the test is false.

10. ALT — "Alternatively," a univariate operator dependent
only on the value of the truth switch. It is true
only if the truth switch is false; thus, it reverses
the value of the truth switch.

11. IMP —- "Implication" operator, false only if the first
condition is true, but unot the second.

12. NIMP-- '"Does not imply," the negation of implication. True
only if the first is true, but not the second.

13. BIF —- "But if." True only if the first condition is false
and the second one true.

14, NBIF-- The negation of '"but 1if."

15. CONS~—- The consistency, or biconditional operator, requiring
both true or both false for the result to be true.

16. EXOR~-~ Exclusive OR. True if one or the other is true, but
not both.

Not all tags will be found to be equally useful, especially since many are
simply negationa of the others. However, providing all of them makes it possible
for the user to express the logical aspects of his problem in a manner most con-
venient for the way in which he thinks of it.

The tags likely to be found to be of most use are IF, AND, OR, ALT and T,
and the user is directed toward an understanding of these first.

Well-formed logical expressions begin with an Initial Clause and end with a
Subsequent Clause, usually headed by an ALT. This insures that the truth switch
is "true” when subsequent operations are attempted. It is good practice to head
a block of computation with a T to avoid possible earlier paths that arrived at

this point with the truth switch undefined.

C. Operands

All operands are assumed to be integer in mode. There are three kinds

of operands permitted: variables, constants and pointers.

(1) Variables

An understanding of the notation used 1s facilitated by considering the
vector form of the data that is supplied to the program. All of the variables
for a single unit of analysis (persom, interview, tramsaction, automobile) are

stored as a vector of integers. The file consists of a sequence of these vectors.
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The program reads one vector at a time during its input phases. After this vec-
tor has been read, execution of the variable generation instructions is initiated,
starting with the first instruction. The path taken through the instructions de-
pends on the values of the input variables for that particular vector and the re-
lational tests and computations that are performed upon them.

The variables are simply numbered using integers up to 9999, and there are
up to 300 permitted in the current implementation of the program. Fewer than
that may actually have been read in, but the user is free to use any of the others.
They will all have been set to zero before the first analysis vector is read.

Only those actually read in each time will have new values for each vector. The
others are under the subsequent control of the user.

A variable is ordinarily referred to by placing it in the operand position

of an instruction. This reference is of the form
Vnnnn

where V 1s a capital letter which is placed in the indicated column in the oper-
and field, and nann is a positive integer. The positive integer must be right-
adjusted in the 4-column space reserved for it. Some examples are:

V0005 (variable five)
V0019 (variable nineteen)

(2) Constants

If the V i3 not present, and the column usually centaining it is ﬁlank, the
operand will be interpreted as an integer constant which may be as much as eight
digits in width, or seven digits and a minus sign. The constant must be right-
adjusted in the 8-column space provided in the operand field for it. Some exam-

ples are:

5
05
+5
-5

Minus signs must be punched and are to be placed just to the left of the most sig-
nificant digit. Plus signs may be punched but are not orxdinarily used. Use of
leading zeroes is optional. Constants must be positive or negative integers, not
alphabetic characters or real numbers containing a decimal point.

Several simple examples are given on Figure A2.1. The two lines starting

with statement 1 first turn the truth switch to true. They are not really necessary
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since the next statement starts with IF, but a reminder. The next line truncates
variable 5 so that all values over 100,000 are changed to 100,000 (to keep extreme
cases from dominating things, without omitting them altogether).

The six lines starting with statement 2 change variable 10 from a numerical
field to a bracket or interval code. WNote that the ranges go from the smallest
real number up, e.g., from -24 to -5, Note also the economy in the implied ditto
signs when OR, IN, etc. are repeated automatically.

The three lines starting with statement 3 illustrate the logical (AND) which
means "both A and B," i.e., the new variable is coded 1 only if both things are
true. ALT reverses the truth switch so that the remainder (omly A, or only B, or
neither) can be coded O.l

The seven lines starting with statement 4 illustrate the GOTO, used to skip
one group past the ALT statement so they will not be recoded to 3 after having

been recoded to 1. The implied code created is:

Code Meaning

1 V30 = 1 and/or V31l = 2-9 (either or both)
2 V40 = 1 and also V41 = 2-9

3 Remainder (neither of the above are true)

Statement 100 turns the switch to True just in case the next operations are

not to start with IF,

(3) TIndirect References and Pointer Variables

A variable may also be referred to in an operand by means of a peinter. A
pointer is established and given a value by setting any variable so that it con-
talns a positive integer. This 1s accomplished using an arithmetlc operation
with the variable to be used as the pointer as a result, e.g., V101l = 26.

Subsequently, the pointer variable is referred te in an indirect reference
and identified as a pointer by the reference. If this occurs, the operand is in-

terpreted as a reference to the variable whose pumber is contained in the pointer.

Any variable can be used as a pointer. A positive integer can be placed in

i1t using arithmetic operators. The contents of any pointer can be modified at any

lNOTE: The operational clause in statement 31 must have a non-blank field
for either the result variable or the operator since the C and D op-
erands are NOT non-zero or blank, e.g., without the = the clause is
ignored and V100 is never set to Q.
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time using arithmetic operations and referring to it by ordinary variable refer-
ences to it. It can be subjected to relatiopal tests. In fact, the only differ-
ence between a pointer and a regular variable is what happens when the pointer
variable is used as an indirect reference in an operand. When this occurs, the
pointer is used simply to find out which other variable is to be used as the oper-
and.

The difference between direct and indirect references to variables using

pointers is best elucidated by giving an example.

01 V0051 = 111
02 V0016 ADD P0OO51 V0015

In ingtruction Ol the comstant 111 is placed in variable 0051. A direct reference
is made to V0051 to put it there. In statement 02, an indirect reference is made
to variable 0051. It is used as a pointer, as indicated by the reference P0O051.
The poilnter points to variable 111. Thus, instruction 02 really reads "add the
contents of that variable whose number is contained in V0051 to the contents of
V0015 and put the result into V0016." But V0051 already contains the number 111
because of Instruction 0l. Thus instruction 02 is interpreted as though it ac-

tually read
02 Vv00l6é ADD V011l  VQO015

Thus, variable 111 is added to variable V0015 and the results placed in variable
V0016.

If we had the set of instructions shown in Figure AZ2.2, we could cbtain the
sum of those varilables in the sequence V0011, V0012, VOQl3,..., V0030, VG003l which
did not have the value 9. The results would be placed in V0044. For instance,
one might want to build an index adding the code values for a number of different
variables except where they are 9 (for not ascertained).

Instructions 1, 2 and 3 establish the initial conditions desired, i.e., the
new variable to be generated (V0044) is set to zero and the pointer is set to the
first of the sequence of variables to be added, VOOll. Then centrol is passed to
instruction 6. This instruction adds the variable "pointed to'" to the partial sum
being developed in V0044 and puts the results back in V0044. However, the oper-
ation is performed only if the variable "pointed to' does not have 9 as its
value. (Let 9 be the "missing-data-code" for each of this series of variables
v0011-v0031.)

If the value of the variable currently being pointed to is not equal to

9, its contents are added to V0044. But if its value is equal to 9, the



Figure A2.2

MULTIVARIATE RECODING FORM
Sum Variables 1l to 33

Coder: Job:
Date: Data:
STATE- LOG. TEST REL. A B RESULT | CONTROL C D COMMENT
MENT TAG VAR. OPER. OPERAND OPERAND VAR. OPER. OPERAND OPERAND
NO. NO. NO.
5 10 15 20 0y 3 4 50 3 74 80
D XXXX D KXXX KXXKX KXXX VPXXXXXXXXX PXXXXXXKXXq VPXXXXq XXXX VPXXXXXXXXXq VP KAXXXKXXXKX mXXXXXXXX
1 V0044 = 0 Set
2 V0101 = 11 initial
3 GOTO 6 values
4 V0101 ADD V0101 1 Increment]
5 IF |vQ101 GT 31 G@rg g9 and test
[ IF [POlO1 NE 9 V0044 ADD V0Q44 PQ1O1 _
7 ALT N@@P Perform
g T GOTO I task
9

next instruction

00T
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addition does not take place and the alternative (instruction 7) is executed in-
stead. This results in nothing being added to V0044 from the current variable
being pointed to. Then, after one of these two paths has been taken, instruction
8 sends control back to instruction 4.

The purpose of instructions 4 and 5 is to increment the integer in the poin-
ter by 1 and then to check it to determine if the value of the integer in the
pointer has now exceeded the subscript of the last variable we wished to add.

Then either an exit takes place to the remainder of the work to be done (statement
9) or the next variable pointed to is checked and, if appropriate, is added and
the loop repeats once more. In instruction 4 the constant 1 is added to the num-
ber in the pointer. (This started at 11 and thus eventually will take on as its
value in turn all the integers between 1l and 32 inclusively.) Its value at the
time statement 9 is executed is 32. Note that when the number in the pointer is
larger than 31 we have completed our task. At this point, the relational expres-—
sion in instruction 5 will be true and the operational clause will be executed,
taking control to statement 9 in computational mode.

On the other hand, if the integer in the pointer is equal to or less than
31 this expression will be false; consequently, the operational clause will not
be executed and control will pass in logical mode to statement 6. Statement 6
starts with an Initial Clause so logical mode is re-entered and the truth switch
acquires a wvalue based only on statement 6, If it is true, the operational part
of statement 6 will be executed and computational mode will be assumed. This will
prevent the ALT tag in statement 7 from being executed, since ALT heads a Subse-
quent Clause. Since the program is in logical mode, the operatiomal part of
statement 7 alsoc is not executed. However, statement 8 contains an Assignment;
hence the truth switch is set to T and the operational part of the statement is
executed, sending control to statement 4 via the GOTO.

In the case where the test for a value of 9 is met, computational mode will
be entered at statement & and the operational part of statement 6 executed. The
occurrence of a logical clause in statement 7 causes a return to logical mode, but
the tag is a Subsequent Clause and is ignored as above. The truth switch remains
undefined until statement 8.

Eventually the value of the pointer variable reaches 32; but we do not wish
to add V0032 to V0044. However, the relational expression in statement 5 would
be true when the pointer reached 32. This would cause control to be transferred
out of the loop upon execution of the operational part of instruction 5. On the

other hand, if we had not yet finished our task, this relational expression would
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still be false and the operational part of imstruction 5 would not be executed.
Congequently, control would pass to instruction 6, which is what we desire since
this would process the next variable in its turn.

This procedure would examine each variable in turm, adding it to V0044 if
its value were not 9. Then, when variables VOOll through V0031 inclusively had
been inspected (and added where appropriate) the pointer, V0l0l, would have the
value 32 and control would pass to statement 9.

It can be seen from the above example that the benefits to be derived from
using pointers are associated with repetitive operations that would take a great
many instructions if written out once for each case. These benefits increase with
the size of the block of "work" instructions that are to be applied repetitively.

A second example i1llustrates another kind of use of the pointer variable.
(See Figure A2.,3.) Here, a complex bracket code is applied both to variable 0061
and to Varilable 0062, replacing each with the appropriate bracketed value. The
reader is encouraged to proceed through the example in some detail, following out

alternative paths that fellow from different values of V0016 and VQ062,

D. Operators
All "a' and "b" operands are assumed to be in integer mode, as well as the

test variable, Vn.

(1) Relational QOperators: IN, OUT, NE, EQ, LE, GE, LT, GT

Vn IN a b True if Vn lies inside the closed interval where "a"

is the lower bound and "b" is the upper bound. The
lower bound must always be placed as the "a" operand.

Vvn  OUT a b True 1f Vn lies outside the closed interval, where "a"
is the lower bound and '"b" is the upper bound. The

lower bound must always be placed as the "a" operand.

Vn NE a True if Vn is not equal to "a" algebraically.
Vn EQ a True if Vn is equal to '"a" algebraically. (Note that

EQ Is used here; = for arithmetic operation)

mi

Vn LE a True if Vn is less than or equal to '"a'" algebraically
(e.g., -6 is less than -5).

Vn GE a True if Vn is greater than or equal to "a" algebraically
(e.g., -1 is greater than -2).

"n_n
.

Vn LT a True if Vn is less than "a

Vn GT a True 1f Vn is greater than "a'.




Applying a Bracket Code to Two Variables Using Pointers

Figure A2.3

MULTIVARIATE RECODING FORM

Coder: Job:
Date: Data:
STATE-| LOG. | TEST | REL. A B RESULT |CONTROL C D COMMENT
MENT TAG | VAR. OPER. OPERAND OPERAND VAR. OPER. OPERAND OPERAND
NO. NO. NO.
5 10 15 20| v 30 y 50| y 65 S0 |y 6y 7 80
D XXXX XXXX [ XXXXX Dxxxx PXXXXXAXXX PXXXXXXXXX Pxxxx XXXX PHXXXXXXXK | PRAXXXXXXX )[Dxxxxxxxx
1 V0201 = 61
2 V0202 = 901
3 GOTO 9001
901 V0201 = 62
A V0202 = 902
5 GOTO 9001
902 next|instructiion
procgdure to [be appligd
9001 IF | PO201 LE 2499 P0201 = 1
OR IN 2500 4999 2
3000 7499 3
7500 9999 4
10000 14999 E]
15000 999998 ] b
9002 ALT 9
9003 T GOTO v0202

£oT
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(2) Arithmetic Operaticns:

=, SET, ZAD, ZSB, ABS, ADD, SUB, MPY, DIV, MOD

All operands and results are assumed to be in integer mode. Note that the

relational operator for equals is "EQ" but the arithmetical operator is "=". The

first is a logical test, the second is an instruction that a variable assume a

certain value.

Vo

Vn

Vn

Vn

Vn

n

Vo

Vn

Vo

vn

SET

Z5B

ABS

SUB

DIV

The contents of "c" are placed in Vn, Note

used, not "EQ".

ll=ll is

The contents of "c'" are placed in Vn and the sign is

is reversed (plus becomes minus, and vice versa).
The contents of "e¢" are placed in Vn and the sign of
Vn is set to +.

The contents of "c¢'" and "d" are added together alge-
braically and the result is placed in Vn. The larg-
est result is 231, Overflows will not be detected.
This 18 a modulo operator. The contents of "¢" are
divided by the contents of "d" using truncated integer
division {without rounding). The remainder is placed
in Vn. The quotient is lost. The sign of the number
placed 1n Vn is the same as the sign of the c/d quo-
tient.

The contents of d is subtracted from c algebraically
and the result stored in Vn.

The contents of ¢ are multipled by the contents of d
algebraically and the results are placed in Vn. Or-
dinary rules apply as far as the sign of the resulrc.
Overflows will not be detected.

The contents of ¢ are divided by the contents of d us-
ing integer division. The integer part of the result
is placed in Vn. The remainder is lost. There is no
rounding; rather, truncation takes place. The sign of
the resultant is according to regular algebraic conven-
tions. If the result is between zero and 1 in absolute
value, then Vn will have the value zero.

The acceptable range of integers is 231 yo -231 ang customary rules apply

to all signs; e.g., -10 multipled by -2 = +20.
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(3) Functions: NRAN, FRAN, LOGT, LOGE, SQRI, ASIN

Arguments are assumed to be integer in mode. Results will appear as in-
tegers with the appropriate number of implied decimal places as indicated by the

d operand.

Vn NRAN ¢ d A normally distributed random number with mean 0 and
variance 1 will be stored in Vn with d implied decimal
places. If ¢ is not equal to zerc or blank, then Vn
will always be in the range -c¢ < r ¢ + c. All gener-
ated numbers outside this range will be rejected and
another number generated until one meets the require-
ments; this is then stored in Vn. On the other hand,
when ¢ = 0, then the first number generated will be
used., Numbers will be rounded to d implied decimals.

Vo FRAN ¢ d A random number from a flat distribution in the range
0 <r<c, and having d implied decimals will be stored
in Vn. Numbers will be rounded to d implied decimals.l

Vn LOGT ¢ d The logarithm to the base 10 of ¢ is stored in Vn. The
number located at ¢ is assumed to have d decimals. The
logarithm stored in Vn always has three implied deci-
mal places. If ¢ <0, Vn = 0.

Vn LOGE ¢ d The natural logarithm of ¢ is stored in Vn. The number

‘ in ¢ is assumed to have d decimal places. The result
stored in Vn always has three implied decimal places,
When ¢ < 0, then Vn = 0.

n SQRT ¢ d The square root of the number stored in c is stored in
Vn., This number stored in c is assumed to have d im-
plied decimal places. The result stored in Vn will
have d implied decimal places. If ¢ < 0, Vn = 0.

Vn ASIN ¢ d The arcsin of ¢ is stored in Vn, The number in c is
assumed to have d decimal places. The result stored
in Vn always has three implied decimal places. The
function applies to all values of ¢ such that
-1 < c £ 1. For all other cases Vn = 0.

lThe pseudo-random number generation used is due to Hastings (1955). The
methods were programmed and tested by Messenger (1970). A flat random distribu-
tion is generated by a non-overflow modulo type of algorithm using a call to the
clock to obtain a starter number, A transformation is applied to produce a normal
distribution. The cycle length is greater than 10,000 (cycle length is the number
of random numbers generated when the first exact duplication occurs). Other tests
of randomness have been examined (Messenger, 1970) and show satisfactory results,
including Chi-square tests of fit to uniform (0,1) at the .05 level based on 10,000
observations, no statistically significant serial correlations in tests varying
lags from l.to 16, and 95% confidence intervals of the sample mean and standard
deviation allowing acceptance of the null hypothesis that the sample was drawn
from a uniform (0,1}. About 350 random numbers/sec are drawn on a 360/40.
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(4) Control Operators: GOTQ, EXIT, NOQP, PRNT

GOTO «c Control is transferred to the statement number whose
integer identifier 1is referred to by the ¢ operand.
Statement numbers are pogitive integers in the range
1l < c <9999, The truth switch is not affected (its
value is "on" at this time anyway). If there is no
such statement number control will pass to the next
sequential instructionm.

EXIT Control is returned to the calling program in which the
recoding statements are imbedded. No further recode
statements will be executed. An EXIT statement is
generated automatlcally when an END statement is en-
countered.

NOOP No operation. Used as a "landing field."
PRNT Vn Vm Causes variables n and m to be printed. The latter,

Vm, may be omitted.

(5) Pseudo Operators: END

END This operator is used to mark the physical end of the
recoding statements, indic¢ating that no more follow,
even on the same physical IBM card. I1ts appearance
causesg transfer of control to the calling program, since
all recoding statements have been read and processed.
During execution of the recoding, an END statement will
be treated like an EXIT, '

A1l of the operators, operands, tags, comments and statement labels are il-

ustrated and listed in Figure A2.4.




Figure A2.4

MULTIVARIATE RECODING FORM

Summary of Recoding Instructions

Coder: Job:
Date: Data:
STATE- |LOG. TEST REL. A B RESULT |CONTROL C D
MENT [TAG |VAR. |OPER. | OPERAND OPERAND  |VAR.  |OPER. OPERAND OPERAND COMMENT
NO. NO. NO. '
5 10 15 20| y 30 |y 4 45 50 y 60y 70 80
Dxxxx Dxxxx XKXXX []xxxx PXXXXXXXXX PXXXXAXXXX | PXXXX pleies PXXAXAXXXX | PXAXXXKXXX XKAXXKXXX
Q001 T | Vxxxx IN VXXX VXXX VXXKX = VXXXX VXXXX COMMENTS
9999 AND [Pxxxx PuT PXXXX Pxxxx PXXXX ZAD Pxxxx Pxxxx
NIMP NE XXXXXXXX XXXXXXXX ) SET XXXXXXXX KXXXXXKX
ALS® |[v0001 EQ -9999999 -9999999 | V0001 ZSB -9999999 -9999999
BIF |V0300 1E 99999999 99999999 | V0300 ABS 99999999 99999999
1F GE ADD
EX@R [POOOL LT Vo001 V0001 v00Q1 SUB V0001 V0001
@R |P0O3CO GL V0300 V0300 P0300 MPY V0300 v0300
N@R EXIT POQOL POCOL _ DIV PO0OL PO0OL
C@NS END P0300 P0300 M@D P0300 P0300
NIF NRAN
NBIF FRAN
ALT L@GT
IMP L@GE
NAND SQRT
F ASOM
END G@TY
N@gP
EXIT
PRNT
END

L0T
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Appendix lll
Set-up Instructions

A. General Description

AID3 is a generalized data amalysis program which uses analysis of variance
techniques to explain as much of the variance of a given dependent variable as
possible.

The AID3 search algorithm makes successive dichotomous partitions on the
sample, using independent variables to "predict" the dependent variable, in such
a way as to maximize differences .among the split groups.

The algorithm may be set

(1) to maximize differences in group means, slopes, or regression

lines;

(2) to examine the explanatory power of 1, 2, or 3 successive splits be-
fore selecting the "best" split;

(3) to rank the predictors, weighting them as to preference in the parti-~
tioning;

(4) to sacrifice explanatory power for symmetry;
(5) to start after a specified partial tree structure has been generated;
(6) to run in successive stages, e.g., redefining predictors, or creating

and then pooling residuals in a 2nd stage analysis.

B. TInput
1. Data file

2. Dictionary file (optional)

3. Contrel cards

€. Output
1. Tnitial printout

(a) statistics for the sample
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(®)

analysis of variance on predictor configuration (optional)

2. Trace printout (split statistics)

(a)
(v)

all splits for each predictor

best split for each predictor

3. Final tables

(a)
(b)
(¢}
(d)
(e)
(£)
(g)

analysis of variance on final groups

group summary (optional)

BSS/TSS with lookahead (optional)

BSS/TSS no lookahead (optional)

BSS/TSS regardless of eligibility (optional)
profile of class means/slopes (optional)

predictor summary (optional)

4. Output residual file (with optional dictionary)

D. Restrictions

1. Maximum number of predictors: NP<63

2. Largest valid class value for a predictor: 31

3. Sum of largest class values for all predictors: &Q0-NP

4. Maximum number of partitions: 89

5. Maximum number of variables: 300

6. R-type variables (see OSIRIS Recode) should not have the same variable
number as V-type variables if an output dictionary is requested.

E. Missing Data Treatment

1. Missing data on the dependent variable may be excluded.

2. Missing data defined in the input dictionary is passed on to the out-
put dictionary.

3. Missing data is generated for the residual and predicted value as a
field of 9's.

Missing data is generated for the group number as '000'.

Missing data may be excluded on the predictors by specifying maximum
class values less than missing data values.

F. Setup Summary

JOB cards

// EXEC 1ISRSYS
//FTO7F001 DD parameters describing input data file

(omit if using an OSIRIS dictionary)

//FTO8FO01 DD parameters describing output data file

(omit if not generating a FORMATTED residual file)




//DICTx
//DATAx

//DICTy

//DATAY

//SETUP
SRUN AID3
SRECODE card

Recode statements

$SETUP card

DD

LD

DD

DD

pD
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parameters describing input dictionary
(omit if on cards or if a FORMATTED data file)

parameters describing input data file
(omit if on cards or if a FORMATTED data file)

parameters describing output dictionary
(omit if residual file not created or a FORMATTED output
file)

parameters describing output data file

(omit if residual file not created or a FORMATTED output
file)

*

optional (may be used only with OSIRIS
data files)

1. Global filter card (optional - only used with OSIRIS data.files)
2. Label card

3. Global parameter card

4. TFormat cards (optional)

5. 1Input variable list card

6. Local filter card (optional)
7. Local label card

8. 1/0 parameter card

Analysis

9. AID3 internal recode cards (optional) Packet

10. Predictor cards

$ DICT
dictiona

$ DATA
data

ry

11. Control parameter card Analysis
12. Predefined split cards (opticnal) Step
% If dictionary on cards
% If data on cards

/%
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G. Description of Control Cards - defaults are underlined.

1. Global Filter

2. Global card:

(optional): See OSIRIS User's Manual
For use with OSIRIS data files only

1-80 columns used as a heading

3. Global parameter card:

INFILE=IN/xxxx For OSIRIS data files only. Up to 4 char-

acters used as the input ddname suffix

PRINT=DICT/NODICT For OSIRIS data files only. Option to

BADDATA=TERM/MDL/MD2/SKIP

print or suppress printing of the input
dictionary file

For OSIRIS data files only.

When non-numeric characters (including em-—
bedded blanks and all blank fields) are
found in numeric variables:

TERM: Terminate the run

MD1: Convert the value to the lst miss-
ing data code and fields of &'s and

a message indicates -'s to nines + 1 or 2 respectively

the number of
so treated

FORMAT=0/n

4, FORMAT cards:

cases MD2: Convert the value to the 2nd miss-

ing data code and fields of &’'s and
-'s to nines + 1 or 2 respectively

» SKIP: Skip the case

For FORMATTED data files only. The number
(1<n<3) of Format cards needed to describe
the input data file FTI0Q7F00L

If FORMAT=n, n>0, was specified on the global parameter
card, n cards of format information. This should in-
clude all input fields, and if a formatted output file
is requested the input descriptors should be followed

by output fields for all generated variables (see sec-
tion H for the order in which variables are generated),
i.e., AID3 recoded, residual, predicted value, and group
number variables. Each item constitutes one variable.
Variables are read in the order listed on the variable
1list card, e.g., if the format is (16,215,I4) and the
variable list is V10, V6, V20, V1 * then the first for-
mat (I6) is for variable 10, the second (I5) is for var-
iable 6 etc.

5. Input Variable List card: a list of all variables from the input data

ANALYSIS PACKET

file plus OSIRIS recode variables (R-type)
to be used in the run. (See OSIRIS User's
Manual).

6. Local Filter (optional): See OSIRIS User's Manual

7. Local Label

8. I/0 Parameter card:




YVAR=(n,m)

NOWEIGHT/WELGHT=n
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n=dependent variable number, no default
m=scale factor. The y-values are multi-
plied by 10 to the scale factor, i.e., 10"
default: 0.

Weight variable number (optional).

ANALYSTIS=MEANS/SLOPES/REGRESSION

OUTLIERS=INCLUDE/EXCLUDE

QUTDIST=5./n

IDVAR=n

NOCONFE/CONF

Type of analysis to be used

XVAR=(n,m) n=covariate number, no default if a SLOPES
or REGRESSION analysis is specified
m=scale factor, default: 0.

SUBSEL=n Subset selector variable number (optional).
If a subset selector variable is given,
all zero values of this variable are fil-
tered from the analysis.

MDOPTION=BOTH/MD1/MD2/NONE (optional)

Missing data option: (See OSIRIS User's

Manual)

NONE: Ignore missing data.

MD1: Eliminate cases with missing data 1
values for the dependent variable
(Y=MD1).

MD2 : Eliminate cases with missing data 2
values for the dependent variable
Y>MD2 , MD2>0
Y<MD2 , MD2<0.

BOTH: Eliminate cases with MD1 or MD2 val-
ues for the dependent variable.

NORECODE/RECODE Internal AID3 recoding option. If RECODE

is specified, then internal recode cards
must be supplied (See 9. below).

Option to include or exclude outliers from
the analysis. An outlier is defined by the
OUTDIST parameter.

Number 6f standard deviations from the par-
ent group mean defining an outlier (punch
decimals).

Variable number for the identification var-
iable printed with each case flagged as an
outlier.

Analysis of variance on predictor configur-
ation option.

TABLES= (BASIC/NONE,NOBSS/BSS,NOEL/ELIG ,NOPR/PRED,NOME /MEANS)

Final tables options

BASIC: Print Group Summary and BSS/TSS
with lookahead tables.

BSS: Print BASIC tables plus BSS/TSS
with no lookahead.
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RESID=(n,m,w)

The following parameters
speclfied:

RESNAME= "name'

CALC=(n,m,w)

CALNAME="name'

GROUP=n

GRONAME= "name'

NOFILE/FILE

OUTFILE=0UT/ xxxx/FORM

NOSTAN/STANDARD

ELIG: Print BASIC tables ﬁlus BSS/TSS of
maximum split regardless of eligib-
ility,

PRED: Print BASIC tables plus predictor
SuUmMmary.

MEANS: Print BASIC tables plus class means/
slopes profile.

Omit if residuals are not to be generated.
n=residual variable number, no default.
m=residual scale factor, no default.
w=residual filed width, needed for OSIRIS
output files only, no default. This should
include a space for a sign character (+,-).

are ignored if the residuals option is not

1-24 character name for the residual.
bPefault: 'AID3 RESIDUAL'.

Omit if the predicted value is not to be
generated. :

n=predicted value variable number
m=predicted value scale factor
w=predicted value field width, needed for
OSIRIS output files only.

1-24 character name for the predicted value.
Default: 'PREDICTED VALUE',

n=variable number for the final group to
which each case belongs. Omit if not to
be generated.

1-24 character name for the group numbers.
Default: 'GROUP NUMBER'.

Option to generate an output file. The
current data set which is stored on a
scratch data file is updated within the
program enabling the user to use residuals
in a2 multi-stage analysis even if NOFILE
is specified.

For OSIRIS output data files, 1-4 charac-
ters used as the output ddname suffix (see
section I1).

For Formatted cutput files: specify 'FORM'.
FORM=n, n>0 must have been specified on the
global parameter card. The same format is
used for the output file as for the input
file (see 4. FORMAT cards and section H).
The output file is generated onto unit
FTO8FOQL.

Option to standardize residuals. TIf STAN-
DARD is specified residuals will be divided
by the standard deviation of the final
group to which they belong.
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ATID3 RECODE cards:

(8).
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RECODE must be specified on the I/0 parameter card
The RECODE option is turned off after the

INPUT mode is completed. See Appendix II for RE-
CODE specifications.

ANALYSIS STEF

10.

11.

Predictor cards:

PRED=(p,>Py>---)
PRENAME="name'

M/F

MAXCLASS=9/n

RANK=1/n
END

Contrel Parameter Card

LOOKAHEAD= (n,m)

List of predictor variable numbers (up to
63) carrying the characteristics specified
below.

1-24 character name used for all predic-
tors listed. Default: dinput dictionary
name.

Monotonic or Free characteristic

M: do not sort on-predictor class means/
slopes before executing the algerithm

F: sort on class means/slopes

Maximum class value allowed for the pre-
dictors, Values greater than the speci-
fied maximum are eliminated from the amnal-
ysis.

Predictor rank, 0O<n<9.

Must be specified on the last predictor
card.

n=the number of lookahead steps (0-2)
=the mumber of splits - 1.
m=the number of permuted Steps.
If n is non-zZero, m must be greater than
zero. Default (0,0},

REDUCIBILITY=(for parent group; for lst lockahead step; for Znd
lookahead step)

MIN=25/n

MAX=25/n
SYMMETRY=0/n

Reducibility criteria for each step in
the lookahead expressed as a percentage
e.g., . 8%=.008., Default (.8;na,na)
(Punch decimals).

Minimum allowable number of cases in a
group, I1f a SLOPES or REGRESSION analysis
is specified then n must be at least 3.
Otherwise, for mean analyses n>l.

Maximum number of partitions. 1<n<89.

Percentage premium for symmetry option.
(Punch decimals e.g., 60.%=.60).

RANK=NORANK/ALL/UP/AT/DOWN

Predictor ranking option

NORANK: no ranking - predictoxr ranks are
ignored

ALL: simple ranking
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12.

UP: range ranking with a preference for
predictors with high ranks, i.e.,
towards 1.

AT: range ranking with a preference for
predictors with a rank "at" the cur-
rent rank.

DOWN: range ranking with a preference for
low ranked predictors, i.e., towards
9.

RANGE= (nup ;ndown; lup; ldown)

for range ranking only

eligible range = nup: number of ranks "UP" for
[a-NUP, atNDOWN] actual splitting

ndown: number of ranks "DOWN"
for actual splitting

lookahead range = lup: number of ranks "UP" for
[a-LUP, a+LDOWN] the ‘lookahead>nup

ldown: number of ranks "DOWN"
for the lookahead>ndown

where a is the current rank at which the algorithm is

operating.

TREE=0/n

Number of pre-specified splits to be made
(see predefined splits cards, 12. below).

TRACE=ELIG/NOTR/BEST/BSS/MIN/ALL

COMPUTE /NOCOMP

QUTPUT/NOOUT

Predefined split cards:

Print trace option

ELIG: print only eligible splits

NOTR: suppress all printing

BEST: print only the best split for each
predictor

BSS:  print "ELIG" + splits which do not
meet the reducibility criterion,
i.e., BSS too small

MIN: print "ELIG" + splits with a resul-
tant group with too few cases

ALL: print the entire trace

Command to execute the COMPUIE mode: gen-
erate any predefined splits if TREE=n,n>0;
execute the splitting algorithm under cur-
rent parameters, and if RESID is specified,
generatlng residuals for those groups which
cannot be split.

Command to execute the OUTPUT mode: gen—
erate residuals for any remaining final
groups; write final Tables.

TREE=n,n>0, must be specified on the con-

trol parameter card. The TREE coption is turned off after the splits
are made. For each split one card:

PARENT=n
CHILD=n

Number of the group to be split.

Number of the first resultant group. (Even
number, the second group will be numbered
n+l.)
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VARTABLE=n Variable number for the predictor used to
nake the split.

CLASS=(c1,c2,...) List of predictor classes to be put into
the first resultant group. Remaining
classes go to the second child.

13. If the NOOUTPUT command appears on the control parameter card (11)
the analysis step is repeated (predictor cards, etc.). Parameters
default to the previously defined values with the exception of the
COMPUTE and OUTPUT commands. Predictor cards need only be included
for those predictors being redefined. New predictors may not be de-
fined. Also, the maximum class value may not be altered.

If the OUTPUT command was specified, then the next analysis packet
is executed (local filter, etc.). Parameters take on the original
defaults.

H. Generated Variables on 'Formatted' Output Files

Generated variables are added to the input variable list in the following

order.l
Variable Relevant Keyword
1. Dependent variable YVAR
2. Weight variable WEIGHT
3. Covariate XVAR
4. Subset selector varlable SUBSET
5. Identification variable IDVAR
6. Residual RESID
7. Predicted value CALC
8. Group number variable GROUP
9. Recode variables, in the (RECODE)
order in which théy appear
in AID3 internal RECCDE
stream
10. Predictors, in the order PRED

they appear

Note: Only those variable numbers not listed on the input variable list are ad-

ded, and they follow the input variables. For example if the variables are

Variable Number
Y 20
predictors 2-5,12
residual 10
other input 1,6-9

lThis information is necessary when generating a formatted cutput file so

that the output field descriptors are in the correct order on the FORMAT cards.
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and the variable list card is V1-V9* then the output variable list order is V1-V9,
V20,V10,V12%,

I. OSIRIS Residual Files1

If OUTFILE=0OUT is specified on the I/0 parameter card, then an OSIRIS type

J dictionary is générated with the following specifications:2

Field3 Number of Missing

Variable Width Decimals Data Name
Y. X 7 p 9...9 s
Predictors 2 0 - p/s
Residual P P 9...9 p/'AID3 RESIDUAL'
Predicted

Value P P 9...9 p/'"PREDICTED VALUE'
Group Number 3 - 000 p/ 'GROUP NUMBER'
Other input

variables s s s s

AID3 Internal

Recode gen-—

erated var-

iables 2 0 - AID VARIABLE NUMBER x

OSIRIS recode variables (R-type) may not have the same variable number as V-
type variables if an OSIRIS residual file is generated. R-type variables become
V-type variables on the output data file (i.e., R-type variables are designated by
negative numbers, e.g., RL0=-10, the absolute value is taken as the variable num-

ber for the output dictionary).

lSee the OSIRIS User's Manual for a complete description of dictionary
files.

29 denotes a specification in the input dictionary, if any; p denotes a
parameter specification.

3Field widths may be overridden by specifying a variable number v, 9100<v<
9999. The hundredths digit of v is the field width. For example, variable
9476 has a field width of 4.
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Appendix IV
Program Documentation

ALD3 was written for an IBM 360/40 computer. AID includes 30 FORTRAN IV
subprograms, OSIRIS subroutines written in FORTRAN IV and assembly language, and
an overlay structure (see Diagram 1). The size of the program after linking with
the overlay is 85,000 bytes, and the core requirement is 104K. It uses five
scratch files all written without format control. Parameter and variable infor-

mation are stored in labelled common blocks.

A. Program Structure

The program flow is contrelled by the main program (ZAILD3). After calling
an initialization program to read and check parameter cards, read the dictionmary,
and inltialize the inpuﬁ and output data and scratch files, the main program de-
termines in which mode the program should be operating (input, compute, or output)
and calls the appropriate subroutines. The input mode 1s executed automatically
after the initielization stage and again after completion of each output phase.
Compute and output commands from the user control the other two modes.

1. Initialization: The input and output units are defined; the input dic-—

tionary or format is read; if specified, an output dictionary is gener-

ated; all parameter cards are read and checked for errors. Execution
is terminated if any errors occur.

2. Input: The input and output parameters are defined; the data set is
read, recoded, and stored; non-valid data is eliminated for the current
analysis packet and outputted onto the residual file if requested; sam-
ple statistics are generated and printed, including the optional l-way
analysis of variance on the predictor configuration.

3. Compute: Computation parameters are defined; any splits defined for
the starting tree option are made; the lookahead algorithm is initiated
and operates under the given parameters--symmetry takes precedence over
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ranking which in turn takes precedence over the lookahead; any group
which cannot be split is deemed a final group and if gspecified is out—
putted onto the residual file. When the splitting process terminates,
if the output mode 1s not specified, the program redefines computation
parameters and continues the splitting process from where it stopped
under the new parameters.

Qutput: Any remaining unsplit group beccmes a final group and, if spec-
ified, is outputted onto the residuval file; final tables are generated,
including the analysis’ of variance on final groups.

Diagram 2 gives the overall structure of the program.”

B. Program Storage

AID3 uses five temporary scratch files. Three are direct access files
(ISRO1, ISRO2, FTOS5F001), and two are sequential (FT03F0013 FTO4F0CL).

1.

AUNIT (ISROLl): a direct access file {(written and read with the OSIRIS
subroutine DIRECT) used to store the input data matrix, one observation
per record. Two additional records are written, followling the data
matrix, containing the missing data codes. If RV denctes the total num-
ber of variables referenced by the program, then the record length is
4(NV+7) bytes < 1228. Chart 1 shows the storage needed.

BUNIT (ISR02): a direct access file (written and read with DIRECT) used
to store information for each group: a list of the record numbers in
AUNIT containing the observations in the group; group totals; and class
totals for each predictor. The record length is 896 bytes. Chart 2
shows the storage needed for each group.

CUNIT (05): a direct access file (FORTRAN IV DEFINE FILE) used for the
lookahead process and final tables. The maximum number of records used
is 200, and the maximum record length is 224 words. The file is created
with the statement

DEFINE FILE 5(200,224,U,IC)

NSCR (03): an unformatted sequential file used to store information
for each group on which a split attempt has been made. There are up
to nine records per group, with a maximum record length of 126 words,

NSETUP (04): an unformatted sequential file used to store the input
parameters (local filter and label, I/0 parameters, internal recode
statements, predictor information, and computation parameters).

The input and output units necessary t¢ run AID3 are given below.

Unit Function

FTO1F001 control card input
FTO3F00L NSCR

FTO4F001 NSETUP

FTO5F001 CUNIT
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FTO6F00L printex

FTO7FOOi formatted input data file omit if using
FTO8FOOL formatted output data file 2?{2;8 data
ISROL1 AUNIT

ISR02 BUNIT

DICTIN input dictionary

DATAIN input data file omit if using
DICTOUT output dictionary EZETEEZS
DATAQUT output data file

C. Execution without QSIRIS

The AID3 subprograms are written in FORTRAN IV level G, however they use
OSIRIS subroutinesl some of which are written in IBM assembler, in particular the
OSIRIS input and output, filter, and recode routines.

With the exception of the OSIRIS program DIRECT which reads and writes the
direct access scratch files ISROL and ISR02, the code using the OSIRIS options may
be deleted from the program and a comparable feature will still be available. For

example,
OSIRIS AID3

Q0SIRIS data sets Formatted data sets
Multivariate Recode Internal Recode
Global/local filter Subset selector

or missing data filter

Running the program without OSIRIS will, however, be less efficient.

The subroutine DIRECT can be replaced with FORTRAN IV DEFINE FILES. This is
tedious, since DIRECT is used throughout the program, i.e., during all modes, input,
compute, and output.

Table A4.l gives a list of all the AID3, OSIRIS, and IBM programs called by
each of the AID3 subroutines. Also included are the labelled common areas used

by each ALD3 subroutine.

lSee the OSIRIS Subroutine Manual




Diagram 1

Overlay Structure

HAIN Program (ZAID3)1
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Diagram II

AID3 Program Structure

INITIALLZATION:
(1) Define I/0 and scratch
data files

(2) Read setup
(3) Read dictionary or format

(4) Generare putput dictlon—
ary (optional)

<<mk L0

YES

INPUT:
(1) Read, recode, and store
input data file

(2) Initialize aoalysis packef

(data storege and infor-
mation)
{3 n}nova on c‘:onfiguration

ot
P

1
@_AL
YES

Set analysis step param-
aters

(1) predicrors

(2} control parameters

CMPUTE:

YES —
< e — execute looka-
COMPUTE? hesad algorithm

NO

YES MLAJ

IERROR=0? »

YES
QUTPUT?
NO

CALL QUTPUT

(1) generate residuala/output
file (oprional)

(2) print final tables

w1ERROR=1, an error has

occurrad
=-1,noraal termingtion

123



TABLE A4.1 AID3 SUBPROGRAMS REFERENCING TABLE

—
AID3 OSIRIS FORTRAN LABELLED COMMON
MAIN(ZAID] | INIT,INPUT,CMPSET, ISRSET* DLOCS#, IBCOH# LABELS, DSTORR, OPTION, PREDS, EPLITC, ELIGL, SYMTRY , RANKC
CMPUTE, OUTRUT i
ERASE — — — —_
SUMS — — — PREDS
WIDTAL — DIRECT# — DSTORE, PREDS
ANOVAL COVAN — IBCOM DSTORE,OPTION, PRRDS,, GROUPS , SPLITC, FACTOR
COVAN _ — TBCOMP (PTION, PACTOR
VINDEX — — — VLIST
TNIT TNP AR, RECODE, CFILT¥ ILIST,BEIKEY, TRCOMF LABELS, VLIST, DSTORE, OPTLON, ELIGC, DEPEND, YREAD, FILT
PARAME ,GENDIC GETDLC*
INPARN ERASE, VINDEX LEFJ*, [SRFILTR*, IBCOMS , FRYPIF, LABELS, YLIST, DSTORE ,OPTION, PREDS, SPLITC, ELIGC, SYMTRY , RANKC, DEPEND,
SETKEY , GRAME* FIXEI#,MINO YEEAD, FILT
RECODE VINDEX,MATCH — TRCOMS OPTION, RECORD
MATGH — — —
PARAMS VINDEX SETKEY , GNAME* 1BCOME LABELS, VLIST, DSTORE ,OPTION, FREDS, SPLLTC , ELIGC, SYMTRY, RARKC, DEPEND,
YREAD
GENDIC — GRAME* , GWIDTH* , GHREC*, IRCOMF , FIXPT#,ALOGLO LABELS, VLIST,0PTION, PREDS , DEPEND, YREAD, FILT
RCHALO*, RADIX*, CNV 7%,
LISTDT MOVE#*
INPUT ERASE,ANDVAL, INDATA, | SETADD* 1BOOME LABELS, VLLST, DSTORE , OPTION , PREDS, GROUPS, SPLITC, SYMTRY , RANKG,
VALID DEPEND, YREAD, FILT, FACTOR
INDATA ERASE, RCLIET DIRECT® , CABE® , GCLOSEN TBCOME, SQRT LABELS, YLIST, DSTORE , OPTLON, PREDS, GRO(PS, SPLITC, DEPEND, YREAD
RCLIST VINDEX, RANDH _ ALOG ,ALOGLO, ARSIN VLIST,QPTLON, RECORD
15COMf , FRXPI#, SQRT'
VALID ERASE, SUMS, WTOTAL DIRECT*,SIEVE®, CNVT*, TBCOM# VLIST,BSTORE, GPTION ,PREDS ,GROUPS, SPLITC, DEPEND, YREAD, FILT, FACTOR
RCHALO* .
GENRES — DIRECT*,RCHAIQ®, CNV7# LBOOHI VLIST,DSTORE, OPTION,BREDS, GROUPS, SPLITC, DEPEND, YREAD
SOURCE — — — GROUPS, SPLITC,PACTOR
QFSET ERASE — 1BCONE VLIST,OPTION,PREDS, SPLITC, ELIGC, SYMTRY , RANKC, DEPEND, FACTOR
CHPUTE SOURCE,CENRES,FIRDL, | — 18COME LABELS, VLIST, DSTORE, OPTION, PREDS , GROUPS , SPLITG , ELTGC, SYMTRY , RARK.,
DEFINE,LAHEAD DEPEND, FACTOR), BESTS
FINDL — — — GROUPS
DEFINE CENRES, FINDL, SUNDER — IBCOMF ¥LLST,DSTORE,OPTION, PREDS, GROUPS, SPLITC, SYMTRY , RANKC, DEPEND, FACTOR,
BESTS
SUNDER ERASE, SUMS ,WTOTAL DIRECT* IBCOME VLIST,DSTORE, OPTION , PREDS, GROUP'S, SPLITC, RANKC, DEPEND, FACTOR
LAHEAD ERASE,FINDL, SUNDER, DIRECT* 1BOOMS , SQRT, MING, VLIST,DSTORE, OPTION, PREDS , GROUPS, SPLITC, ELLGC, S TTRX, RANKC, BESTS
SPLLT, BCOMP HAKD
SPLIT ERASE — LBCOM# ¥LIST,OPTION,PREDS, CROUPS, SPLITC, ELIGE, DEPERD
BCOMP — — MING,MAXO PEKDS,ELIGC, RANKC, BESTS
OUTEUT SOURCE,GENRES, DIRECT*, RCHATO® TRCOME VLIST,DSTORE ,OPTION, GROUPS, SFLLTC, DEPEND, YREAD, FACTOR
ANOVAL, TABLES
TABLES ERASE, COVAN DIRECT* LBCUME, SQRT, MINO,AMAXL | VLIST,DSTORE,OFTION,PREDS,GROUPS,SPLITC, ELIGC, DEPEND, FACTOR

* danotes a 360 apsembly languaga routine

vt




Chart 1 - STORAGE AREA "AUNIT"®

NA Records of Length = NELEM + NV < 307 words

MV < 300, the total number of variables accessed (imput + generated)

NELEM® NVBUT
. /‘\_A__--—\ P —
k record : Ink[wkjyklﬁilxk{xi[zkll . . . lvk(i)l . : . __[bk(Nv _]

= number of observations in kth record (1)
= weight variable
= weighted dependent variable (wy”)

= weighted square of the dependent variable (wy~2)

= weighted independent variable (wx™)
For slopes/regression
= veighted square of the independent variable (wx~2) analysis only

= welghted cross product (wy’x”)

N I A P A

vk(i) = vaglue of variable i in kth record, i=1, ..., NV

(e.g.) for predictors, class to which that predictor belongs in configuration

lThe file contains 1 record per cobservation plus 2 final records containing the missing data 1 and
missing data 2 codes respectively (NA + 2 records total).

ZSpace for all 7 elements must be allotted regardless of the analysis type.

STt



NRECBL
Records of
Length 224
Wordsl

NP

Records

Chart 2 - STORAGE AREA "BUNIT"

For each Group L: NRECB, + NP + 1 RECORDS (NP = number of predictors)

L

[El’ .. .. [Ezzgj k = Record number in JAUNIT"

of ¢ observation
. in Group L.
. o =1,2,..., NL;NL = number of cases in

L1 (o] | S

(kNL+1 = NA + 1 = ESF)

"

lgﬁLleIYLIYSQL|XL‘qulgil Group Totals2 e.g. ¥SQ = uzlwax;z

Lnl,l Wl,llyl,llyi,ﬂxl,llxi,llzlg” o |n1,Nc) W1,Nc]71,Nc| yiugxl,Ncl xi,NCj Z1,Ncl

Class totals for First Predicter
(Classes 1,...,NC)

BN e, 1) Ywe, 1] Yxe, 1l RN ERIEE ’ : + ] Class Totals for

NPth Predictor -

Lr»zm:crs,L - oy + 1)/224

2
x, x2 and z elements are generated for slopes or regressiou analyses only; however, the space
must be allocated regardless.

97T
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Appendix V |
Examples of Output

It ig difficult to demonstrate all the cptions available with this program.
An example of a pre-set tree was given earlier in chapter II. We present here
three runs, the first two done as a palr.

The first run is an analysis of house values for a national sample of home-—
owners, with extensive recoding, a one-step lookahead, & premium for symmetry,
and one variable ranked 0 so that its splits are suppressed.

The second run is an analysis of the residuals from the first run, without
lookahead or éymmetry premiums, but with three ranks of predictors.

The third run deals with the dominance of income in explaining house value
by searching for different regressions (of house value on income), rather than
merely different mean house values. It is, of course, still dominated By differ—
ences in level, not slope (income elasticity), and the overall regression (income
effect) accounts for more of the variance than the subgroup differences in re-
gression.

The three figures which follow summarize the main results, derivable from
the three Group Summary Tables in the output. The data are weighted to offset
oversampling among low income families and minority group members. Comments have
been added on the computer print-out, but a few overall notes may be appropriate
here. Neither the lookahead nor the symmetry premium made any substantial dif-
ference. Splits on groups 2, 4 and 7 of the first housevalue analysis were al-
tered, but subsequent splits were made in eéch case on the predictor that would
have been used earlier without the lookahead. Since the symmetry premium only
operates when it is the second of a pair that is being split and looks only at
the identical split (predictor and subclass division), it is-understandable that

it would require substantial losses in explanatory power to achieve symmetry.



128

The ranking in the second run also made little difference. Group 5 was
split on race, reducing the error variance by less than commuting time would
have, but a later split was made of the white group using commuting time. Since
commuting time is highly correlated with moré basic things like age {(retired) and
city silze and distance from center, it was purposely kept out of the analysis un-
til the very end by the ranking.

The third—-regression—-run selects groups with different regression (levels
or slopes), but the print-out also gives the subgroup regressions for each sub-
class of each predictor for each subgroup developed. Table A5-1 gives examples
for three predictors.

These runs took extensive computer time both because of the elaborate re-
code even of data filtered out and not used, and because of the lookahead and
the printing of a leot of detailed output, and because of "the large sample.

For further details, see the comments added to the computer print-out which

follows.




Figure A5-1
House Value (1970) by Family and Location Factors*

All Familize

Average House Value =
$20,073

2 3
Fanily Incomee lLeas Family Incomes
Than $10,000 410,000 or mora
§14,235 $26,586
] 7 4 5
Lergaat City in Area Largest City in Ares Incomes 510,000-19,999 Incomes 520,000 or More
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less Than $7500-9999 city leas| |city Cicy In || City In raquired rooms
57,500 than 500,000 Area I8 || Ares 1s rooms required
500, 000 ar more L&ss Thar{| 100,000
100,000 or More
$14,968 $16,758 $21,382 $25,701 521,731 || $30,598 $39, 399 $43,373
782 181 I8 188 126 31 65
22 23
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12 Final Groupa Account for 39.8% of the Variance. tral and and south
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Ed
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46807 MIR &S

34
and those over $75,000 reduced to $75,000.
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Figure A5-2

Residuals of House Value Related to Factors Affecting Price or Demand or Inertia

Not College Graduates

§-94
4
No High School Some High School
$-2873 $~50
/\
Blacks Not Blacks
$-4813 $+227

All Families

Average Residual = $0

/\

\\

College Graduates

§+5232
12 13
Speud Some Time Does not Spend Any Time
Commuting Commuting
§+425) $+9873
50
14 15
Have Not Moved Have Moved
Since 1963 Since 1563
$+1111 $+6981
102 117

Spend Some Time No Time
Commuting Commuting
§-502 $+3030
206
. 10 11
Spend 1-299 Spend 300
Hours a Year Qr More
Commruting Hours Per
Year Com-
§-1251 mucing
$+3772
667 109

46807 MIR 45

8 Final groups account for 11.6% of the residual varlance or an additional 7.0% of the criginal variance
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Figure AS-3

Regressions of House Value on Income* for Home Owners

All: Families
20,073=6773 + 1.29 (10,297)

Largest City in Area Less Than 100,000 People

16,062=7964 + .96 (8432)

Largest City in Area 100,000 or More

24,012=7058 + 1.40 (12,128}

1012
4 5
Less Than 15 Miles From Center 15 or More Miles Frouw Center
of Nearest City of Nearegr City
22,335=7236 + 1.26 (11,959) 28,267=7445 + 1.66 (12,556)
7 6 10 11
65 or Older 18-64 Years 0ld Not In Northeast Northeast
19,043=7858 + 1.88 22,804=5518 + 1.35 26,276=9453 + 1.36 30,809=5731 + 1.%
{5951) (12,815} {12,369) (12,7935)
88 97
12 13 8 9
South Northeast 45=-64 18-44
and or Years Yaares

West Rorthceotral 0ld old

15,319=11,504 + 21,715=6507 + 22,057=7715 + 23,489=2307 +
.70 (5925 2.55 (5969) 1.09 (13,073) 1.68 (12,579)

32 41 335 383

*
Data Read:
Average House Value Incresase io Value
House = At 2era + Per Dollar Increase Average
v Incoma
Value Incone In Incoma
46807 MIR 46

TET
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Table AS-1

REGRESSIONS OF HOUSE VALUE ON INCOME FOR SUBCLASSES OF THREE PREDICTORS
(for all home owners)

Marginal
Increment
(Slope of
Average Regression Number
House Line on Average of
Value Income) Income Cases
"Required" Number of Rooms
(family/size and structure)
2 $17,620 1.07 $ 7,956 661
3 21,220 1.46 10,900 557
4 22,560 1.50 12,3%0 486
5 : 19,990 1.59 11,560 225
6 or more 19,980 1.38 12,280 159
Race
White 20,690 1.24 10,560 1626
Black 11,780 0.89 8,872 406
Other 19,870 1.25 9,594 56
Size of Largest City
in Area
SMSA's
500,000 or more 25,830 1.46 12,630 633
100,000-499,999 21,540 1.24 11,450 443
50,000-99,999 18,550 .93 10,280 222
Not SMSA's
25,000-49,999 18,460 .87 9,486 144
10,000-24,999 15,780 1.08 8,460 200
.86 7,004 446

Less than 10,000 13,940

46807 MIR 46




//n026959  JOR  {, .

/7 468362.,A1D34460,101sBAKERMEGLEVEL=(1,1}

/7 EXEC  ISRSYS

XXNSIRIS PROC LIB=0SIRPGM,LIBI=SRCLIR,LIB2=CPSLIA,LIBI=ISPLIRA,

XX DI='% . FT4AF00]1,VOL =REF=#,FT4BFO01 ",
XX DA='4,FT4LIFO0L VL =REF=%,FT4TFQ0] ',
XX P=TSRSYSs SPL=1000,5P2=6040

XXGO EXEC PGM=gP

1EF6531 SUBSTITUTION JCL — PGM=[SRSYS

XXSTEPLIR DD DSN=gLI®, NISP=SHR

TEF653] SUBSTITUTION JCL - DSN=X4683612.NT5P=5HR
34 DD NSN=ELIRLNISP=5HR

1EFH531 SUASTITUTINN JCL - DSN=QSIRPGM,NISP=SHR

XX D0 NSK=RLIR2,DISP=SHR

IEF6SIT SURSTITUTION JCL — OSN=CPSLIR,OISP<SHR

XX D0 DSN=ELTR3,DISP=SHR

TEFSS3T SUASTITUTION JCL, - DSN=ISRLIB,NISP=SHR
XXSYSPUNCH DD SYSOUT=R

XXSYSPRINT DD SYSOUT=A

XXSYSOUT 0D SYSpUT=4

XX FT02F0Q1 0D SYSOUT=AR

XXFTO3FO00L DD UNIT=S5YSNA,SPACE=(TRK,{100+50))+
XX  DCB=(RECFM=YRS,LRECL=2004BI KSI7ZE%2044BUFND=1)
XXFTO4FQQ01 NN UNITeSYSDA,SPACE={ TRK (200,501},
XX DCB={RECFM=VAS,LRECL=200.ALKSTIE=204,RUFND=1])
XXFTOSFOOL NN UNIT=SYSDA, SPACE=(FRK, (50,5001,

XX DGRz (RECEM=VAS, LRECL=200,RLKSTZE=204, BUFNO=1)
XXFTO6F0QL DD SYSOUT=A

XXFTOTFOOL DN OUNIT=SYSDASPALE=(TRK,150,50)),

XX  DCB={RECF4=VBS,LRECL=200+BLKSIZF=204,8UFND=1}
XXFTO8FO0L DD UNIT=S5YSDA, SPACE={ TRK,(50,10}),

XX DCR={RECFM=FB,LRECL=80,BLKSTZE=B0]

XXFT46F001 MO UNIT=SYSDA,SPACE=(TRK, {5,541,

XX LA (RECFM=FR,LRECL=A0,RLKS[ZE=800)}

XXFT4TFOO1 DD UNTT=5YSDA,SPACE=(TRK,{ 100,201,

%X NCA={RECFM=FA,LRECL=80,BLKSIZE=3520)
XXFT4BFQOL DD UN3T=SYSDA, SPACE=[TRK, (100200},

XX DCA=(RECFM=FR,LRECL=804BLKS] [E=3520)
XXFT4QFOQ0L DD UNIT=SYSDA,SPACE=1TRX,(200,50)),
XX  DCB=(RECFM=FR,LRECL=80,RLKST ZE=35201
XXFTSOFQOL ND  DSN< ISRNEWS ¢DT1SP=SHR , LABEL=(4,, 1N}

XXFTQ9FOQL DO VML=REF=*,FT4TFQ01,0SN=% _FT47F001,0i SP={QLO,0ELETE)

XX1SRO1 DD UNIT=SYSDA,SPACE=({TRK,(ESP1Y, CONTIG)

IEF683] SURSTITUTION JCL - UNIT=SYSDA,SPACE=[TRK,(1D00),,CONTLG)

XX15R02 DN UNIT=5YS50A,SPACE=(TRK,(KSP2},+CONTIG!

TEFS531 SUBSTITUTION JCL — UNIT=SYSDA,SPACGE={TRK41620)+,CONTIG)
XX1SRP3 DD UNIT=SYSDA,SPACE={TRK,(50),++CONTIG)

XXISRO09 DD UNIT=S5YSDA,SPACE=(TRK,1200},.,CONTIG)

XXISRIO 0D UNIT=5Y.SNA4,SPACE=(TRK,{200]4+,CONTIG)

‘KKUCLOAD 0D  DSNs#® ,FTOTFO01, VOL=REF=*,FTA7FO0L,+0ISP={DLD.DELETE)

XXSORTWKOL ND OSN=#_.ISRO1+DISP=IOLD,DELETEY ., VOL=REF=#%.15R01
XXSORTWKO2 DD DSN=*,iSR0Z4DISP={QLDDELETE) ,VOL=REF=%,1SR02
XXSORTWKO3 DD DSN=*,ISROS,0ISP={OLD,OFELETE},VOL=REF=%,15R09
XXSDRTWKO4 ND  DSN=%.1$R10,01SP=(0LD,DELFTE), VOL=REF=%_[SR10
XXSORTLI'B DD ODSN=35¥S51,S0RTLIA,.DJSP=SHR

TXXSORT IN DD YDUL=REF=%*.FT4TF 001 ,DSN=%,FT47F00L :NISP=(NLD,PASS)
XXSORTNUT 0D VDL=REF=#.FT47FQ0) ,D5N=%.FT4TFQOLl,DISP={DLD,PASS),

XX CCBm[RECFM=FR,LRECL=B0,BLKSIZE=800)

2/701CTIN DD OSN-DIB90XM.UNIT=TAPE,VOL=SER=298H,DI5P=0LD, L 4BEL=1

X/OICTIN DD DSN=EDI.DISP={OLD,PASS),

Jas 12

00000070
00000080
00000090
00000100
00000110

00000120
00000130
00000140
00000150

00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
20000240
00000250
06000260
06000270
00000280
00000230
03000300
C0000310
60000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000400
00000410

00000420

00000430
00000440
00000450
00000460
00000470
00000480
00000490
00000500
00000510
40000520
00000530
00000540

00000550

1EF6531 SUASTITUTION JCL — DSN=%.FT4BF001,VOLwREF=%.FT4BF001,01SP={0LD,PASS},

Only the cands [(&ines] begirning with
a sdash (/) are actually prepared and
consiitute the job controf language {JCL].

Name and number of the dictionany gile

LT


http://468362.fi
http://pn.zpan.zd

XX DCB=RUFND=1

F/DATATN DD DSNABOOXAY. UNIT=TAPE , VOL=SER=ZIBH,N1SP=0LD, LABEL=2

X/DATAIN DSN=EDA,DISP=(0OLD,PASS),

Do

0D0DDSA0

00000570

I1EF6531 SUBSTITUTION JCL — DSN=#*,FT47F001,VOL=REF=%,FT47FO001.DISP=(0LD,PASS),
XX DCA=AUFND=1
XXDicTouTy
XX DCB=BUFND=1
XXDATAQUT
XX DCB=BUFNO=1

XXFTO1F0O01 DD UNTIT=SYSDA,SPACE={TRK,(50,10)),.,0CB={RECFM=F,BLKSIZE=80}
XXSYSIN DD OSN=x#,FTQLFOQL4DISP=(0LD+DELETE) « IL=REF=*.FTO1FQ01

VOL=REF=% ,FT4TFQO0L+DSN=%,FT47FO01+DISP=(0LD+PASS),

Z1SYSUDUMP NN SYSOUT=4

Z/SETUP DD *

1

1EF2361 ALLDC,

1EF237(
T1EF2371T
TEF2371
1EF2371

TEF2371 7080

LEF23T1
TEF23T8
TEF23TID
TEF2371
TEF2371

IEF2371°

1EF2371
tEF2371
1EF2371
TEF2378
I1EF23TT
TEF237[
TEF2371
1EF2371
TEF2371
TEF237]
TEF2371
TEF2371
IEF2371
1EF2371
1EF2371
1EF237]
1EF2371
1€EF2371
TEF2371
LEF23TY
TEF2371
1EF2371
TEF2371
TEF2371
TEF2371
[EF2371
IEF2371
TEF237]
[EF2371
1EF2371

132
133
132
132

0ED
oE1

081
130
131
132
7]
130
131

132
130
131

122
132
130
130
131
132
130
130
130
130
131
130
130
123
130
130
281
281
131
130
132
122
0€3
040

FOR MQ26559

ALLDCATED
ALLOCATED
ALLDCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLODCATER
ALLNCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLDCATEC
ALLDCATED
ALLDCATED
ALLDCATED
ALLDCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLNCATED
ALLOCATED
ALLNCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLNCATED
ALLOCATED
ALLDCATED
ALLDCATED
ALLOCAYED
ALLOCATED
ALLNCATED
ALLNCATED
ALLOCATED
ALLOCATED
ALLOCATED
ALLDCATEN
ALLOCATEN

1EC2091 MD26959  298A
1EC2091 M02695% 2988
XL5A3617

¥NL SER NOS=
as [RPSM

TEF2851
TEF2851
1EF2851

TD
TD
10
TC
T0
T0
TO
™
T0
0
o
Ta
T0
T
™
™
To
TO
T
TO
Ta
TO
TQ
10
TO
™
T
10
T0
TQ
LL1]
™
™
0
1y
T
T0
TO
10
TO
70

281 TR=C0N, TW=D00.FG=000,CL=000,N=000,510=00046
281 TP=000, Tw=000,FG=003,CL=000+N=000,510=04660

15R4

ND  VOL=REF=*,FT&4BF00L .DSN=%.FT48F00L +DISP={0OLO,PASS},

G0
STEPLIR

SYSPUNCH
SYSPRINT
sYsaur
FTO2FO01
FTO3FO0L
FT04F 001
FTOSFOOL
FT.06F001
FTC7FO0L
FTQBFO00!
FT46F0OL
FT4TF001
FT4BF001
FT49FQ0L
FTS0F001
FTO9FO0L
15R0]
15R02
15R03
15R09
1SR10
ucLOAD
SDRTWKOL
SNR TWKOZ
SORTWKO3
SNRTWK 04
SOATLIR
SORTIN
SORTOUT.
DICTIN
DATAIN
DICTOUT
DATADUT
FTO1FDOL
SYSIN
SYSUDUMP
SETUP

00000580
00000590
00000600
00000810
00000620
00000630
00000640

Name and numben of the data §ile

eT




IEF285t
[EF2851
[EF2851
1EF2851
IEF2851
[EF285T
[EF2R51
(EF2851
[EF2851
[EF2B5T
[EF285T
TEF2B5]
1EF2851
IEF2851
TEF2851
1EF2851
1EF2851
TEF2851
1EF2851
TEF2R51
JEF28S1
1EF2851
1EFZB51
TEF2851
[EF2851
1EF2AS1
1EF2851
1EF283]
[EF2831
1EF2851
1EF2A5§
1EF2851
TEF2851
JEF2851
1EF2RS1
TEF2851
1EF2851
1EF2851
1EF2851
1EF2831
TEF2831
1EF2831
1EF2831
[EF2R31
1EF283
IEF2B3]
1EF283¢
1EF2R31
1EFZB3Y
TEF2BS1
[EF2851
1EF2851
TEF2851
1EF2851
JEF2851
TEF26%1
1EF285T
1EF2851
TEF2851
1EF285T
1EF2851

vat SER NOSs MFT1 .

cPSLIA

vOL SER NOS= ISRA .,

TSRLIA

vOL SER NNS= [SRA

SYS73160, TO91518.RFO00.M026959,R0000253
VAL SER NOS= PJKOO1.
SYSTI1AQ.TOG1S18.RFOCC.M0Z6959.ROCV0254
vaL SER NOS= [SRB .
SYS73160,TOS1518.8F000.M026389,R0000255
VoL SER NOS= I'SRA .
SY573160.TO91518.RF000.14026959,.R0000256
¥nL SER NDS= .
SY$73160.TOS1518.RFG00.MD26955.FR 0000257
vOL SE9 NOS=x PJKOOL.
SYS573160.T09151R,RFO00.M026959,R0000258
vOL SER NNS= [SRB .
SYS573160,.T091518.RFD00.MO26955.R0000259
vOL SER NOSs ISRA

SYS73160,TOG151R. RFOOD.MD2695%,R0000260
VOL SER NOS= PJKODOl.
SYST3160.,TOI1IS18.RF000.M026959.R0000261
vOL SER NNS~ ISRB .
SYST3160.T091518.RF000.M026955.R 0000262
VOL SFR NOS= [SRA

ISRNEWS

vOL SFR NAS= ISRA .
SYS$73160.7091518.RF000.M026559.R0000260
vOL SER NNS$= PJKOOL 1.
SYS$73160.T091518,RFO000.M026959.R0000263
vOL SER NOS= PUKOOL.
SYS731460.TO91S1E.RFO00.M026¥59.RO000264
VOL SER NOS= [SRR .
SYS573160.TO9151R.RFOC0.MD26959.R00G0265
vDL SER NNS= I15RA
SYST3160.TASIS1A.RFOQ0.MD26959.R 0000266
VoL SER NOS< PJKGOL.
SYS73160.T091518.RFO00.MI26959.R000026T
VAL SER NOS= PJKOO1. )
5YS73160.TO9151R.RFO00.M026959.RO000257
VOL SER NDS= PJKOO1 1.
SY573160.T0OS1518.RFOD0.M026959,R0000263
VOL SER NQOSs= PJKODL 1.
SYS573160.TOS(518.RFO00.M0246959.R0000265
vOL SER NOS« ISRB 1.
S$Y$573160.TO9L1518.RFO00.M026959.ROD00266
vOL SER NOSx PJKOD1 1.
5Y573160.T091518, RFO0D.MD26959.R000026T
VOL SER WDSw PJKOODI 1.

SYS1.SORTLIE

VOL SER NOSs MFT1 .
SYS$73160.T091518.RFO00.M026959,R0000260
vOL SER NOS= PJKQOL.
S¥S$73160.TO91518.RFO00.M026959.R0000260
vOL SER NOS= PJK0OL.

D1890XMS

vOL SER NOS= 2988 .

DAB9OXM S

VOL SER NOS» 2988 .
$YS$73160.Y081518.RF000.M026959.,R0000261
VOL SER NDS= ISRB .

KEPT

KEPT

DELETED
NELETED
NELETED
PELETED
DELETED
DELETED
DELETED
NELETED
NELETEN
DELETED

KEPT

NOT DELETED 8
DELETED
NELETED
DELETED
NELETED
NELETED

NOT DELETED 8
NOT DELETED B
NOT DELETED 8
NOT DELETED 8
NOT DELETED 8
KEPT

PASSED

PASSED

XKEPT

KEPT

PASSED

SET


http://RFO0O.M026959.fi

JEFZAS]
1EF?RS [
TEF2RRT
1EF2RS]
1EF2R13]
(EF2R3 |
1EF2AR]
1FF2851
1SPO11
15RO131L
TEF2PS]
LEFPR5 ]
1FF285]
1EF2AS]
TEF2RS]
TFF2AS[
TEF2AG]
1RF295 1
tspol27
1$FQ16T

SYS72160.T.0%151B.2F000.M026959,P0000250
VDL SER NOS= PJKOOL.

5Y573160. 05151 P.RFO0Q,MD24559,R0000268
V(L SFR NOS= 1S5Ra .

SYST314C, TIS1S18.RFO0C.~026C59.R000026A
VOi. SFR NiIS= [8Ra i

5YS573)160, I0G151R.RFO0C.MO26G552. RON0Q2TD
VoL SER NNS=

PASSED
DELETED
NAOT DELETED 8

OELETEN

STFP 6O FXECUTION TIME = 2049,72 SEC.
PARTITION 2: SI1IF= 104, LWM=FOFQ0O, WWM=FOFDI0D , CORE ALLNCATED=

SYS7TA160.TOS1S1R.RFGCO.M0264959.R0000240
VL SER NIIS= PJKCOL.
SYST31AN.TOSIS1ALRF000.M926959.R 0000260
YL SER NNS= P.KOO1.
SYST3LA0.TISIS1A. PFO00.M026%59,R0000261
vnL SEP MNSs 1SRR .
SY§73160.TUS 1518, PFOCO. 024959, R0O000260
vOL SFR NNS= PUKOOL.

KEPT
KEPT
KEPT

KEPRT

TAT, M074952 CXECUTION TTME = 2049,72 SEC.

TIME NF PAY = 13.59.700, DATE = 73.1460

104,

CNORE USED=

96

9¢T
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kREE®
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whenn

*hxkaTIME IS 12:37:

INSTITUTE FOR SOCIAL RESEARCH MANITOR SYSTEM 02/05/73
FASTER VERSIONS OF TABLES, MDC. AND REGRESSN NOW AVAILARLE AY SPECIFYING

EFRE

EERN

/7 EXEC ASIRIS LI1B=X485321X,LIB1=0SIRPGH

SEERE

gk kK

45T FOR MOC AND 20%° FOR REGRESSH

SAVINGS ARE 10-45% FOR TABLES,

[}

*Exkk | [STING DF SET-UP FOLLOWS:

CARD
NOD.

s e e
NIV S WN e O DD TN Wy

-
»

NN —
-0 D

NN
(YN

(2N
[

W NN
D 0 m

[
(RN

kEERk

This Listing of the
70 candsz:g noduced
by the OSIRIS monitor

1 2 3 4 S -3 T 8
123456T89012345678901234567890123456785012345678901234567B92012345678901234567890
$SRUN ATD3
INCLUDE v1264=1 AND Y1109=0-1 AND V542=0-1 AND V1499=]1-9=»
MTR 45, PROJECT 4&6BD70,A1D3 . .
* This variable Lisd gives

V101.V542,v603,VI009,V1109,V1122,V1146,V1168,V1240,V1250.,V12T4,V1276,V1365,
V1370,V1490,V1490,V1499,V1506,VI572,V1609,V1T19,¥1T720,V1264,V1685%
HOUSE VALUE TRUNCATED TN 5000-75000 BY SQUEEZING EXTREME CASES

RESI={200540,8) RESN=‘HOUSE VALUE RESIDUALS"*

2 IFVITI9 LT 3000 w2001 = 1 tables
R I 3000 4999 z
5000 7499 3
1500 9999 P
10000 14999 5
15000 19999 6
GE 20000 7
3 [FVi365  EQ 1 v2002 = 1 MARRTED
6070 4
1FV1260  EO 1 V2002 = z SKGL MAN
ALT V2002 = 3 SNGL SMN
P V1720 HPY 100¥1720
V2003 DIVV1720D V1719
tFvzo03 LT -5 v2003 = 1 BRACKET
R N -4 4 2 PERCENT
5 9 3 CHANGE
10 19 4
GE 20 5 TnCaME
S 1FVI2T4  EQ 1 v2004 = :
GOTO & HOW
[FV 603 FO 1 v2004 = 2 LONG
60T 6 LIVED
TPV 101 IN T 8VZ004 = 3 HERE
GOTO 6
1Ey 101 '™ “ 6v2008 = 4
ALT vzo04 = s
6  IFVIle8  IN 7 V1168 = 6 TRUNCATE
7 IFEVIOO9  EQ 1 vioos = 2 NINE
8 1FV1003 6T & V1009 = 6 CADES
9 IFVI370 NE 1 V137 = )
10 [FV1490 OUT 1 V1490 = 3
11 IFV1250 0T ] 31250 = 5

? 7
1236567800123“567R9012345678@012365678901234567800123456759012345678901234567890

:
|
|

‘all the vaiiables Lo be

aead off the {nput data

GOTHTRAS MORGAN file .

YVAR=1122 WEIG=1609 RECODE MDQOP=N{INE TABLIIBSS.ELIG-PRED,HE‘NJ} Means anafysis, weighied dependent variabk
nesiduats but no output file, print alfl

Create a 7-categony
code from a 5-digit
income fiedd.

Creates ane classd i~
cation from two
othenrs.

Integer anithmetic
requened muliipliying
by 100 before diuvid-
4ing and bracketing.

Creates ane classi-
fieation {rom three,
using "GOTO" xo avoid

Thuncating
predicton
classifications.

xrecoding 4 case twice.

LET



Car0n
N,
42
43
a4
45
46
&7
LY ]
&9
5Q
51
52
53
54

56
57
a8
s4a
60
61
62
63
&4
65
1]
%4
&8
69
70

1 2 3 & 5 6 7 R
12345678901234567890123456789012345678901234567890123456769012345678901234657890

17 1Fvil2z 6T 75000 vit22 =
ORV1122 LT 5000 vilzz =
13 1FVITI19 GT 25000 V1719 =
14 1FV1276 GT S V1276 =
15 1EV1146 IN 1 9V114b =
ar 100 149
150 19¢
200 299
GE 390
END
PRED=2001 MaXL=T PREN='3-YR AVE $ INC'*

PRED=(1168,1009) MAXC=6K%
PRED=2002 MAXC=3 PREN=*SEX & MAR STATUS**
PRED=1506%
PRED=1498 MAXC=5%
PRED=1572 MAXC=4 Fxk
PRED=1490 MAXC=3 F RANK=Q END*
LODK=(1¢1l) RENUa{.6,.12) MIN=3 RANK=ALL TRACF=AEST
SECOND STAGE OF ACTNTRGS MORGAN
YVAR2200% WEIG=1609 TARLs{ELIGsMEAN)*
PREN=1276 MAXL=5 RANK=Z*
PRED=2004 PREN='H(W LONG LIVD HERE' MAXCa5 RANK=2%
PREDal&RS*
PRED=1490 F MAXC=3x
PRED=1250 MAXC=5%
PRED=2003 PRENz'T CHANGE [N [NCOME! MAXCe=S#
PREO®1370 MAXC=1%
PALDallG6 MAXC=6 RANK«3 END#
REDU=,6 MINS3 RANK=UP RANGE=(2,2,2,2)%
A oand with /* agter this indicates
Zthe end of the setup,

75000
5000
25000
5

Y T

SYMM=30,

BRACKET
ANNUAL

HOUR S
COMMUTNG

Fdnat analysis atrategy Apeuﬁ&ad
predictons: whether muintained
subelass onder and amith.

* I-siep Lookahead, simple nanhing, 30%
premium o4 eymmy paint beat sapfit
4in trace, minimum group sizes3.

Pange aankins with preference UP, no Lookahead

8LT




AIN3: NSIRIS SEARCHING FAR STPUCTURE - JULY 1973

THE FILTER 15:

TNCLUDE V12n4=1 AND V1109=0-1 AND V542=0-1 AND V1499=1-9%

MTR 45, PRNJECT 462070,4103

THE VARIARLF LIST IS:
V001 sV E42,VE03,VILDD, V1109, V1122,V1146,VI16R,V1240,¥1250,V0274,V1276,V1265,

V13760,v1490,V149R, V1409, V1506 ,VIST2,V1607,¥1T7194V1T20,V1264,V14085%

Execution of {he program begins
with @ Llydang and nleapretaio
of the setup.

R

6€T



VAR,  TYPE VARTARLE NAME TLDC  WIDTH NODEC  RESP.  MDCOOEL MDEDDE2

T 101 [+} WHEN MOVED IN S:3& 270 1 s} 1 0000009
T 542 0 CHANGE IN FU COMP 153125 1070 1 Q 1

T 503 o MNVED SIMCE SPRNG&RLA—3IS 1149 1 0 1 0000009
T 1009 0 AKT AGE HEAD 9V1009 1831 1 1} 1

T 1109 o] CHANGE TN FU COMP 21:1R 2021 1 a 1

T 1122 +) HOUSE VALUE 211:38-42 2041 5 0 1

T 1146 0 HRS HEAD TRVL WK272:30-37 2103 3 0 1

T 1158 s} ¥ REQUIRED RNOMS 23:12 2154 1 0 1

T 1240 2} SEX (F HEAD 26340 2351 1 0 1

¥ 1250 0 PR TRANSP GDAN 26:52 2363 1 0 1 0000009
T 1264 0 NWN DR RENT? 26167 2378 1 Q 1

T 1274 3 MOVED SINCE SPRING 26:77 23R8 1 0 1 0000009
T 1276 ) MIGHT MOVE 26179 2390 1 a 1 0000009
T 1355 0 HARTTAL STATUS 20110 2514 1 0 1

T 1370 0 EXPECT CHILNPEN 2 29:18 2521 1 o 1 0000009
T 1445 1] ENUCATION OF MEaD 31:43 2657 1 1] 1 0000009
T 1490 s} RACE 31:48 2662 1 0 1 4000009
T 14cn [s3 NDIST T CNTP SMS4 3] :58 2672 1 Q 1 Q000009
T 1¢¢a 0 TYPE OF STRUGTIME 3]:5¢ 2673 1 o 1 Q000009
T 1504 o LRGST PLAC/SMSA PSU31:66 2680 1 0 1

T 1872 o] GURREMT REGION 2vaT2 28138 1 0 1 0000009

T 1609 0 WEIGHT ov50% 2892 2 0 1

T 1718 Q MEAN MONEY TNCOME 3o 5 4] 1

T 1720 [ SLAPE MONEY INCOME 3184 6 9 1

HNUSE VALUE TRUNCATED TO 5000-75000 RY SQUEEZING EXTREME CASES BOTMTR45 MORGAN
YVAF=1122 WETRE1606 REGODE MNOPxNANF TARL=(RSS,ELIG,PRED,MEAN)
PESI=(2305,0,8) BESN='HOUSE VALUF RESIDUALS' %

‘RN LOG TEST REL A& DIPFPAND £ OPERAND OFES OP C DPERAND 0O NPERAND  TEXT
? 1EVITLY LT 3000 qvzo0l = 1 o}

REFND i0

CORr
CArR
COoRr

TSEQND
00000
00000
Q0000
00000
Q0a00
00000
00000
0000
00000
00000
00000
00000
00000
00000
aooeo
00000
00000
00000
00000
00000
00000
coooo
004000

00000

oyt




A

L]

VINCOOUOORINCO0000,fFOCTWODAIOD

Fl

GR [
0
[
0
0
0
1FV13A5

IFV1240
LT 0
T o]
o
FFV2003
ne o}
o}

0

0
1FV1274
0

IFY 603

0
1Fv 101
]

IFv 101
LT ¢]
[FV1]6R
1IFV1009
1FVIQOR
IFV1370
1FV1490
IFv1250
1FV1122
orRVEIL27
TFviT]®
1FV1274
1FVI14aék
ar

[=N=R= -]

ND

GE
o

EQ

LT
1N

GE
EQ
EQ

™

GE

PREO=2001 MAXC=T

PRFR=11168,1009})

PRED=2002 MaX(=3

PRED=15

0b6%

MAXC=6%

3000
S000
500
1a00Q
15000
20000

[

N N~
P O PO OO~ OOV EANODQ — O~

75000
5000
75000
5

1

100
150
2900
300

0

soag 0
7499 0
2939 0

L4999 Q

19999 Q

0

[+)
ov2002
] 0
ovzon2
ov2002
aviT2o
Qv2003
ov20023
4 0
9 0
19 0
0 o]
ov2004
¢} 0
av2004
V] )
av2004
0 [+]
6V2004
0v2004
9viléen
ovioon
ov1009
avl3v7o
2V1490
3vi250
ovilaz
ovilz2
oviTi19
ov1Z7s
99vil Lt
149 0
199 4}
299 a
0 0
0 0

)
o)
=
el

PRENTI3~YR AVE ¥ INL*#

PREN='S5EX § MAR STATUS'*

PRED=1498 MAXC=5%

PREQ=1572 MAX(=c4 F=x

PREN=1490 MAXCs3 F RANK=Q END®

LONK={1
CONPYTE

auTPuT

WO RN

100Y
1720V

NMWOGNOW S WS NG =N DN

~
W
= X4
[=X=)
(=3

25000

K

owswNn -

+1) REDU=(.6y.12) MIN=3 RANK=aLL TRACE=BEST SYMM=3(.

SPECIFTED

SPECIFIED

*

[=NN-N-N-NRo NN -¥e

-
~ -~
)
L -N=)

OCCODCOO0CDO00OoOC0DCODLOOOOODDODOO

MARRIED

SNGL MAN
SNGL SHN

BRACKEY
PERCENT
CHANGE
IN
[NCOME

HOW
LONG
LIVED
HERE

TRUNCATE
NINE
LODES

ARACKET
ANNUAL
HOURS

COMMUTNG

%I



SECNND STAGE NF BOINTR&S MORGAN
YVAR=2005 WEIG=1609 TABL=(ELIG,MEAN)*
PRED=1276 MAXGC=5 RANK=2%

PREN=2004 PREN='HOW LONG LIV HERE' MAXC=5 RANK=2=*
PRFN=1485%

PRED=1430 f MaxC=

PREN=1250 MAXC=65%

PRFD=2003% PREN='Z CHANGE IN TNCOME'! MAXC=5%
PRED=)3TC MARM=1#

PRFNx1L4h MAXC=A RANK=3 ENO*

REMI=.A MTH=7 RANK=UP RANGE=([2,2¢2,2)1%

GO¥PUTE SEFCIFIED

auTePuT SPFCIFIFD

THE (NMPLETE VARIABLE LTST [5:
101 542 4nT 100G 110% 1127 1146 1168 1240 1250 1274 1276 136% 1370
1710 1720 1264 14P% 200% 2001 2002 2003 2004

[ . S

These variables, appended Lo the
Anput vaniable List, are wariables
generated using the residual and
recode oplions.

1490

1498

1499

L1506

1572

1609

vl




HOUSY vaLpg TRUNCATCN TA S000-75000 RY SQUEEZING EXTREME CASES

20Pa NRSFIVATIONS RCAD AFTER GLNRAL FILTER

¥ AVEPAGE = 2. C07342F Q4
STaNTARLD QEVIATION = 1.278252F G&
BOINAARIFS = ~4,3RA320F 04 £.353600C 04

2090 CASES INCLUNED JN THE ANALYSIS
O FILTEREN (LOCAL/SURSET SELECTORY
0O MISSING DATA CASES
0 OUTLIF2S [NCLUGEN
0 INVALTN PREDICTOR VALUES

P0RA SA&MPLE NPSERVATIONS - WITH TOTALS

WETGHTS = A, 157500F
NEPENDENT VARTAALE (Y} = 1.6374890
¥ -SOUARED = 4,61€2390

n4
09
13

STAGF 1 OF THE ANALYSIS
REST SPLIT BASED ON MEANS
1-STEP LOOKAHFAN WITH | FORCED SPLITS

SPLITTIMA FRITEPTA —
MAX TMUIYM MUNBFR OF SPLITS = 25
MINT¥M # OBSERVATIONS [N & GRODP = 73

AVERACE
VARLANCE

YAGE OF TATAL §S5 M SPLITS MUST EXPLATN = Q.&6(N=1), 0.1{N=2},

PREFIIM FNR SYMMETRY = 30,0

807TMTR45 MORGAN

2.007342E 04
1.623931E 08

PRINT CASES DUTSTINF 5.0 STANDARD NEVIATIONS OF PARENT GROUUP MEAN

R RANKED PREBICTORS SPECTIFIEN
PRENDICTAT RANK PREFFRENCE AT
SPLIT ATTEMPT RANGE - 0 RANKS UP, O RANKS DOWN
ELIGTRILITY RANGE - 0 RANKS UP, Q RANKS DNORN
PAENICTAR VARTARLF NUMRER TYPE MAX CLASS
1 3-YR AVE § JNC V2001 L] T
2 4 REQUIRFN RODMS 23:12 viisa L] &
El BKT AGE HEAD <v1Q0e v1ioo9 H [}
4 SFX & ®ar §TavTys V2002 M 3
5 LRGST PLAC/SMSA PSU3Ll:66 Vi506e 4 9
] NTSYT TN CNYTR SMSA  31:58 Vi4QR M 5
7 CURRENT REGIAN OV4T2 V1572 F 4
L] RACE A1:48 V1490 F 3
WEIGHTED ¥ VARIARLE 1122 HGUSE VALUE 21:38-42 SCALED AY

PFSIDHAL-HOUSE VALUE RESTDUALS V2005- SCALE FACTOR

GRONP NNV 0, PREDICTED VALUE V¥

1 CANDICATES - GRrROUP S5

1 1.332240F 13

0— SCALE FACTOR

ATTEMPT SPLIT QN GRNOUP 1 WITH 55 = 1.332240% 13

1.0€ 00O

RANK
1

O

1.0E 0O

2.5E 08

€Yt


http://-4.lB33p.0F
ftp://FTP.Y

LOOKAHEAD T

SPLIT ATTEMPT ON GRQOUP 1 WITH
BEST SPLIT ON PREOICTOR 2001
BEST SPLIT ON PREDICTOAR 1168
BEST SPLIT ON PREDICTOR 1009
AEST SPLIT DN PREDILTOR 2002
BEST SALTT ON PREQDICTOR 1506
BEST SPLIT ON PREDICTQR 1498
BEST SPLI(T ON PREDICTOR 1572
BEST SPLIT ON PREDICTOR 1490

TENTATIVE SPLIT 1. SPLIT GROUP
GROUP 2 WITH 1261 OBSERVA

W= 4.,30130E 04 Y=
GPOUP 3 WITH B2T (OBSERVA
W= 3.B5620F 04 Y=

SPUIT ATTEMPT ON GROUP 3 WITH N = 827, 55 = T7.209825EF 12

BEST SPLIT ON PREDICTAR 2001
BEST SPLTT ON PREDICTOR 1168
REST SPLIT ON PREDICTOR 1009
BEST SPLIT NN PREDICTOR 2002
BEST SPLIT ON PREDICTOR 1506
REST SPLIT ON PRFNDICTOR 149R
REST SPLIT ON PREDICTOR 1572

1-$TEP LANKAHEAD TD SPLIT GROUP

ENTATIVE PARTITION

N = 2088, 55 = 1.332240€ 13
3.102057E 12 AFTER CLASS 4
2.726633E 11 AFTER CLASS
4,380196E 1] AFTER CLASS
3.80238BF 11 AFTER CLASS

2 Group 1 [the whole seleoted data set!
1
1.284775E 12 AFTER CLASS 2
3
3
2

48 soarched foi the bess splif on each
predicton {n Lun,

6.,633711E 11 AFTER CLASS
5.695026E 11 AFYER CLASS
4,04B007E 11 AFTER CLASS
1 ON PREDICTOR 2001 WITH BSS
TIONS FROM & CLASSES = 1 2
6.,122730 08 YS0= 1.172600 13 X=
TIONS FROM 2 CLASSES = S &6 T
1.025220 09 YS5Q= 3,644664D 13 X=

o u W HNNH

3.102057E 12 "
3 &

Partition group 1 on the Mt
predieton (V2001) and Iay{ﬁ
the buat denond split ok

With Lhe Langest remaining

1.11159LF 12 AFTER CLASS variance .

1.474717€ 10 AFTER CLASS
2.999766E 10 AFTER CLASS
3.1T0BS4E 09 AFTER CLASS
4,843247F 11 AFTER CLASS
6.205892E 10 AFTER CLASS
3,152271F 11 AFTER CLASS

LI U | T T |

e AT N YR

1, TOTAL BSS = 4.213648E 12 The best total BSS ¢on the two splils,

1. SOULIT GRS 1 ON PREDICTOR 2001, B85S = 3.102057E 12 :
2. SPLIT GROUP 3 ON PRERICTOR 2001, BSS = 1.111591F 12 the glnst on V2001

TENTATIVE SPLIT 1. SPLIT GROUP

GROUP 2 WITH 661 OBSERVATIONS FROM 1 CLASSES = 2
W= 2.91370E Q%4 Y= 5.13416D 0& YSOQ= 1.295660 13 X=

GROUP 3 WITH 1427 OBSERVA
W= 5,243R0E 04 Y=

SPLIT ATTEMPT ON GROUP 3 WITH N = 1427, 55 = 9,1398R2E 12

AFST SPLIT ON PREDICTOR 2001
BEST SPLIT DN PRENDTCTOR 1]1¢&8
REST SOLIT ON PRENICTNR 1009
REST SPLIT OM PREDICTOR 2QC2
RFST SPLIT NN PREDICTOR 1506
REST SPLIT ON PREDICTOR 1498
AEST SPLIT ON PREDICTOR 1572

1-STEP LODKAHFAD TO SPLIT GROUP

1. SPLIT GROUP 1 DN PREDICTOR 1148, BSS = 2.726633F 11
2. SPLIT GRQUP 2 ON PREDICTOR 2001, BSS = 2,232R80E 12

TENTATIVE SPLIT 1. SPLTT GROUP

1 ON PREDICTOR 1168 WITH BSS = 2.726633E 11 T

TIDNS FROM 4 CLASSES = 3 & 5 &
1.124070 09 YS50Q= 3,323580 13 X=

2.232880F 12 AFTER CLASS
2.751463E 10 AFTER CLASS
1.484448€ 11 AFTER CLASS
1,50T097F 1] AFTER CLASS
8.852664F 11 AFTER CLASS
3,935432F 11 AFTER CLASS
4.414253E 11 AFTER CLASS

Repeat the process making the finad
spLit on the second predicton (V1/68).

FWN s,

(U IO TR T (I |

1, TOTAL RSS = 2.505543E 12

1 0N PREDICTOR 1009 WITH RSS = 4,3801%6E 11

GROUP 2 WITH 1759 QBSERVATIONS FROM 4 CLASSES = 2 3 4 5

W= 6.60020E 0% Y=

1.399180 0¢ YS$O0= &.077390 13 X=

GROUP 3 WITH 329 GASERVATIONS FRNM 1 CLASSES = &
W= 1.55720E 04 Y= 2.38312D0 08 YSQ= 5.41R54D 12 X=

SPLIT ATTEMPT DN GROUP 2 WITH N = 1759+ 88 = 1.111268E

BEST SPLTIT NN PRENDICTOR 2001
AEST SPLIT OGN PREDICTOR 1llss
REST SPLTT ON PREDICTOR 1gpe
REST SPLIT ON PREDICTOR 2002
REST SPLIT 0ON PRENICTOR 1%0&

13
2.477005E 12 AFTER CLASS 5
8.328210E 10 AFTER CLASS 2
B8.,7G9053F 10 AFTER CLASS 4
1.683258F 11 AFTER CLASS 1
9.,942010F 11 AFTER CLASS 2

YT



REST SPLIT ON PRENICTOR 1498 = 4.563906F 11 AFTER CLASS 3
REST SPLIT ON PREDICTOR 1572 = 4.739396F 11 AFTER CLASS 3

1-STEP LOOGKAHEAD TO SPLIT GROUP le TOTAL BSS = 2,915025F 12
1. SPLIT GROUP 1 ON PREDICTOR 1009, ASS = 4.3BO196E 11
2. SPLIT GROUP 2 ON PRENDICTOR 2001, BSS = 2.4TTO0SE 12

TENTATIVE SPLIT 1. SPLIT GROUP L (N PREOTCTOR 2002 WITH ASS = 3,802388E 11

GROUP 2 WITH 1660 OBSERVATIONS FROM 1 CLASSES = 1)
W= 6.66B60F D4 Ye 1.40661D0 09 YSO= 4.10219D 13 Xx=
GROUP 3 WITH  42B DBSERVATIDNS FROM 2 CLASSES = 2 3
W= 1.48910E 06 Y= 2.30879D 08 YS50= 5.,17054D 12 X=

SPLIT ATTEMPT ON GROUP 2 WITH N = 1660, 55 = 1.135127E 13
REST SPLIT ON PREDILTOR 200] 2.501147E 12 AFTER CLASS &
BEST SPLIT ON PREDICTOR 1168 1.402407E 11 AFTER CLASS 2
REST SPLIT NN PREDICTOR 1009 2.1T2649F 11 AFTER CLASS 5

SEX £ MAR STATUS CONSTANT — HO SPLIT
BEST SPLIT NN PREDICTCOR 15048 1.216348F 12 AFTER CLASS 2
REST SPLIT ON PREDICTOR 1498 5.137016E 11 AFTER CLASS 3
REST SPLIT ON PREDICTCOR 1572 5.58R994% 11 AFYER CLASS 3

1-STEP LOOKAHFAD TQ SPLIT GROUP Ly TATAL BSS = 2.881386E 12
1. SPLIT GROUP 1 0N PREDICTQR 2002, 8SS5 = 3,802348EF 11}
2. SPLIT GROUP 2 NN PRENICTOR 2001, BSS = 2.501147E 12

TENTATIVE SPLIT 1, SPLIT GROuUP 1 QM PREDICTOR 1506 WITH BSS = 1.,28B775F 12

GRaue 2 WITH 1076 ORSERVATIONS FROM 2 CLASSES = ]
W= &,11590E Q&4 Y= 9.883150 0A YSQ= 3,15359D0 13 X—
GROUP 3 WITH 1012 GRSEAVATIONS FRNM 4 CLASSES = 3 5 8
W= 4,0616QF Q4 Y= 6£,491740 Q8 YS50= 1.46545D 13 X=

SPLTIT ATTEMPT 0N GROUP 2 WITH N = 10764 58 = 7.804341E 12
REST SPLIT ON PREPICTOR 200) 1.737969F 12 AFTER CLASS
REST SPLIT (N PREDICTOR 116A 1.188162E 11 AFTER CLASS
BEST SPLIT ON PREDICTOR 1009 1.722349E 11 AFTER CLASS
REST SPLIT ON PREDICTOR 2002 3.119723E 11 AFTER CLASS
REST SPLIT ON PRENICTOR 1506 1.84B8C010F 11 AFTER (LASS
REST SPLIT ON PREDICTOR 1498 2,937691F L1 AFTER CLASS
REST SPLIT NN PREDICTOR 1572 ?.7TAT36TE 11 AFTER CLASS

NN B RN

(O T I TR R T )

1-STEP LOOKAHEAD TO SPLIT GROUP 1« TOTAL RSS = 3.026T44E 12
1. SPLIY GROUP 1 oN PREDICTOR 1506, RSS = 1.2R8877%€ 12
2. SPLIT GROWP 2 ON PRENICTOR 2001, BSS = 1.73796°f 12

TENTATIVE SPLEIT 1. SPLIT GROUP 1 ON PRENICTOR 1498 WITH RSS = 4.433711E 11

GROUP 7 WITH 1304 CASERVATINNS FROM 3 CLASSES = 1 2 3
Wx 5.07440F 04 Y= 1.131400 0% YSQ= 3.39227D 13 X=

[alVlg 3 WITH 784 NBSERVATIONS FPOM 2 CLASSES = 4 5
W= 2.CRITO0E 04 Y= 5.060AA0 0A YSQ= 1.226960 13 X=

SPLLET ATTEHPT ON GRMP 7 WITH N = 13044 58 = B.696735F 1
REST SPLIT NN PREDTICTOR 2001 1.AT2T63E 12 AFTER CLASS S
AEST SPLTIT NN PREDICTOR LlaR 1.296543F L1 AFTER CLASS 2
AEST SPLIT NW PRENICTOR 1009 2.204862€ 11 AFTFR CLASS &
REST SPLIT ON PREDICTNR 2007 2.0724R89F 11 AFTER CLASS 1
REST SPLIT NN PREDICTOR [50¢ 4,94D0F1E 1) AFTER CLASS )
RFST SPLTT ON PRENICTOR 1498 2.342267F 11 AFTER CLASS 1
BEST SPLIT NN PREDICTOR 1572 3.4A1105F 11 AFTER CLASS 2

N e

SHT



1-STEP LODOKAHEAD TG SELIT GROULP 1, TOTAL RSS = 2,537134£ |2
1. SPLIT GROUP 1 ON PRENDICTOR 1498, ASS = 6.633711E 11
2« SPLIT GROUP 2 ON PREDTCTOR 2001, RSS = 1.8737863E 12
TENTATTVE SPLIT 1. SPLIT GROUP 1 ON PREDTLTOR 1572 WITH BSS = 5.4695026E 11
GROUP 2 WITH 790 CBSERVATIONS FROM 1 CLASSES = 3
We 2.37430E 04 Y= 3.786930 08 YS5Q0= 9.16B200 12 %=
GROUP 3 WITH 1298 DBSERVATIONS FROM 3 CLASSES = 2 &4 1
W= 5.78320F 04 Y= 1.258B80D 09 YSO= 3,702420 13 X=

SPLTT ATTEMPT ON GROUP 3 WITH N = 1298, 55 = 9.624T702E 12
REST SPLIT ON PRENDICTOR 2001 2.012377€ 12 AFTER CLASS
BEST SPLIT ON PREDICTOR 1168 2.224659F 1] AFTER CLASS
REST SPLIT ON PREDICTOR 1009 3.248908E 11 AFTER CLASS
REST SPLIT ON PREDICTOR 2002 3.520859F 11 AFTER CLASS
REST SPLIT NN PREDICTOR 150¢& B.7B58%S2E 11 AFTER CLASS
BEST SPLIT ON PREDICTOR 1498 3.664312E 11 AFTER CLASS
REST SPLIT ON PREDICTOR 1572 2.5T5374E 11 AFTER CLASS

BN e AT

1-STEP LOOKAHEAD TO SPLIT GRQUP 1« TOTAL BS55 = 2,581879%9E 12
1. SPLIT GROUP 1 ON PRENICTOR 15724 BSS = 5.695026F 11
2+ SPLIT GROUP 3 fIN PREDICTOR 2001, BSS = 2.012377€E 12

9yl




¥#kek PARTITION OF GROUP 1 #dwks

FROM ELIGIRLE PRENICTARS ARDIND THE CURRENT RANK 1, 0 UP AND Q DOWN
MAX [MUM ELIGURLE BSS AT EACH STEP MAXTMUM TOTAL BSS (LDOXKAHEAD)
1.5PLIT 1 IN V2001 BSS= 3,10206F 12 SPLIT 1 ON V2001 B55 = 3,10206E 12
2.5PLIT 3 ON V2001 RSS5= 1.11159€ 12 sPLIT 3 ON V2001 BSS = 1.11159E 12
PEI2}= 1.599E 1C, TOTAL= 4.2136%F 12 TOTAL= 4.21345E 12

PREDICTNR 2001 HAS RANK 1

SPLIT GROUP 1 ON 3-YR AVE § INC V2001
GRrROUP 7 WITH 1261 DBSERVATIONS FROM 4 CLASSES = 1 2 3 4
W= 4.30130E 04 Y= 6.122730 08 YS0= 1.172600 13 X=
GROUP 3 WITH B27 NRSERVATINNS FROM 3 CLASSES = & &6 7
W= I,A%620% 04 Y= 1.02522D 0% ¥YSQ= 3.44664D 13 X=

2 CANDIGATES - GROUP sS
2 3.010512E 12
3 7.209825€ 12

ATTEMPT SPLIT ON GROUP 3 WITH 55 = T.209B25E 12

9T



LOOKAHEAD TENTATIVE PARTITION

SPLIT ATTEMPT ON GROUP 2 WITH N = 827, 55 = T.209825E 12
BEST SPLIT ON PREDICTOR 2001 1.111591F 12 AFTER CLASS &
BEST SPLIT ON PREDICTOR 11468 1.47471TE 10 AFTER CLASS
BEST SPLIT ON PREDICYOR 1009 2.9997&6F 10 AFTER CLASS 123
REST SPLIT ON PREDICTOR 2002 3.170B94E 09 AFTER CLASS 1
AEST SPLIT QN PREDICTOR 150A 4.843247E 11 AFTER CLASS 1
REST SPLIY ON PREDICTNR 1458 65.205B92F 10 AFTER (LASS 1
BEST SPLIT ON PREDICTDR 1572 3.152271F 11 AFTER CLASS &
BEST SPLIT {IN PREDICTDR 1450 9.516037E 10 AFTER CLASS 2

TENTATIVE SPLIT L. SPLIT GROUP 3 ON PREDICTNR 2001 WITH BSS =

[T T B IV B (-}

1.111591€ 12

GROUP 4 WITH 705 GRSERVATIONS FROM 2 CLASSES = 5
W= 3.25190E Q4 Y= T7.89293D 08 YSA= 2.323470 11 X=
GR(HP S WITH 122 OBSERVATIONS FROM 1 CLASSES = 7

W= 5.0£4300E 03 Y= 2.359240 08 ¥SQ= 1.12317D0 13 X=

SPLIT 4TTEMPT ON GROUP 4 WITH N = 70, SS = 4,077182¢ 12
BEST SPLIT NN PREDICTOR 2001 2.0Z819RE 11 AFTER CLASS S
PEST SPLIYT DN PRENDICTOR 1148 1.491495F 10 AFTER CLASS
RESY SPLIT DN PREDICTDR ]00% 1.49452BE 10 AFTER CLASS
AFST SPLIT ON PREDICTAR 2002 [.962924E 09 AFTER CLASS
REST SPLIT (N PREDICTOR 1506 2.6STBGTE 1) AFTER TLASS
BEST SPLIT ON PRENICTOR 1448 “.518104F 10 AFTER CLASS
BEST SPLIT NN PRENICTOR 1572 1.709934F 11 AFTER CLASS

S W

400 =0 nn

1-STEP LOMNKAHEAD TO SPLIT GRAUP 3, TOTAL BSS = 1.377376E 12
1. $2LIT GROUP 3 0N PRENICTOR 2001, BSS = 1.111991F L2
2. SOLET GROUP 4 ON PREDICTOR 1506, BSS =  2.657347F 11
TENTATIVE SPLIT 1, SPLIT GROUP 3 ON PREDICTOR 1168 WITH RSS = J.4T4T7LTE 10
GROUP 4 WITH 186 DBSFRVATINNS FROM 1 CLASSES = 2
W= B.99300F 03 Y= 2,20740D0 08 YS0= 7.332780 12 X=
GRNAUP 5 WITH 641 ORSERVATIONS FROM 4 CLASSES = 3 4 5 4
W= 2.95790E 04 Y= 7.96477D 08 YSD= 2.713356D 13 X=

SPLIY ATTEMPT ON GROUP § WITH N = 641, S8 = 5.6836833F 1
REST SPLIT ON PRENICTOR 2001 9,491542€ 11 AFTER CLASS &
REST SPLIT ON PRENICTNR 1148 1.956223E 10 AFTER CLASS &
BEST SPLIT QN PRENICTAR aqQ 2.3376G1F 10 AFTER CLASS 3

1
1
1
'S

N

BEST SPLIT GN PRENICTOR 2002 2.730785F 08 AFTER CLASS
REST SPLIT ON PREDICTOR 1506 3.869833E 11 AFTRER CLASS
REST SPLIT ON PRENDICTNR 1438 5.836793E 10 AFTER CLASS
REST SPLIT ON PREDICTOR 1572 3.034998F 11 AFTER CLASS

L T TR

1-STEP LOOKAHEAD TO SPLIT GROUP 3, TOTAL RSS = ©,A38014E 11
1. SPLIT GROUP 3 ON PREDICTOR 1168, RSS = 1.474717F 10
2. SPLIT GROUP & QN PREDIGCTDR 2001, BSS = 2.491542E t1
TENTATIVE SPLIT 1. SPLIT GROQUP 3 ON PREQICTOR 1005 WITH ASS = 2.999744F 10

Graye 4 WITH 428 CASERVATINNS FROM 2 CLASSES = 2 3
W= 1.9557CE 06 Y= 5.16948D 08 ¥SO= 1.854770 12 X=
GROUP 5 WITH 319G CRSERVATIONS FROM 3 CLASSES = & 53 6

W= [,920050F Q04 Y= 4.8R269D 08 YS50= 1.59187D 13 X=

SPLIT ATTEMPT AN GROUP 4 WITH N = 478, S5 = 3.805654F 12
REST SPLIT NN PRENICYOR 2001 B.4%56975F 11 AFTER CLASS 6
REST SPLIT ON PREDICTOR L1&F 2,475086F 10 AFTER CLASS
BEST SPLIT ON PREDICTOR 1009 3.297352F 10 AFTER CLASS
BEST SPLIT QN PREDICTOR 2002 6,239027F (8 AFTER CLASS
AEST SPLIT O4 PREOITCTOR LS50 4.027°384E 11 AFTER CLASS

wobou N

— i

8hT




BEST SPLIT DN PREDICTOR 1498 2.723362F 10 AFTER CLASS 1

REST SPLIT ON PREDICTOR 1872 = 3.254444E LL AFTER CLASS 2

1-STEP LDOKAHEAD TO SPLIT GROUP 3, TOTAL BSS = B.756952E 11
1. SPLIT GROUP 3 ON PREMICTOR 1009, ASS = 2.999T66E 10
e 2. $PLIT GROUP 4 ON PREDICTOR 2001, BSS = B.456975E 11 .
TENTATIVE SPLIT 1, SPLIT GROUP '3 ON PREDICTOR 2002 WITH BSS = 3.1TO8S4E 09
GROUP 4 WITH  T82 DRSERVATTONS FROM 1 CLASSES = 1
W= 3.865570E 04 Y= S.7634680 OB YS5Q= 3.27634D0 13 X=
GROUP & WITH 45 CASERVATIONS FROM 2 CLASSES = 2 i
W= 2,00500E 03 Y= 5.084A30 07 YSO= 1.703050 12 X=

SPLUIT ATTEMPT ON GRQOUP 4 WITH N = 782, S§ = 6.T793158F 12
BEST SPLIT NN PREGICTOR 2001 1.033711E 12 AFTER CLASS 6
BEST SPLIT DN PREDICTOR 11e8 1.726376E 10 AFTER CLASS 4
REST SPLIT NN PREDICTOR 1009 2.56B8592E 10 AFTER CLASS 3

HoHn

SEX £ MAR STATUS CONSTANT - ND SPLUIT
BEST SPLIT ON PREDICTOR 1506 4.T06512E 11 AFTER CLASS 1
BEST SPLIT Oy PRENICTOR 1498 4.B60359F 10 AFTER CLASS 1
BEST SPLIT On PREDICTOR 1572 3.118717E L1 AFTER CLASS 4

1-STEP LOOKAHEAD T SPLIT GROUP 3. TOTAL ASS = 1,036882F 12°
1. SPLIYT GRDUP 3 ON PREDICTOR 2002, BSS = 3.170894E 09
2. SPLIT GROUP 4 DN PREDICTOR 2001, RSS = 1.03371)F 12
TENTATIVE SPLIT 1, SPLIT GRAOUP 3 ON PREOICTOR 1506 WITH BSS = 4.843247E 11
GROUP 4 WITH 326 NASERVATINNS FROM 1 CLASSES = 1
W= 1.51140FE 04 Y= 4.68540N 04 ¥S$SQ= 1.77001D 13 X=
GROUP 5 WITH 501 GBSERVATTONS FROM 5 CLASSES = 2 3 & 5 6
W= 2.34480E 04 Y= 5.566760 OB ¥YSQ= 1.676620 13 X=

SPLIT ATTEMPT NN GROUP 5 WITH N = 501, 58 = 3,5%0351% 12
BEST SPLIT ON PRENICTOR 2001 4.462341E 11 AFTRER CLASS 6
BEST SPLIT ON PREDICTOR 1148 7.5749)3F 09 AFTER CLASS 3
REST SAL 1T oM PREDICTOR LGOS 1.474403E 1O AFTER CLASS &
BEST SPLIT ON PREDICTOR 2002 1.212888E€ 10 AFTER CLASS 2
BEST SPLIET au PREDICTOR 150¢ 4,996BB4E 10 AFTER CLASS 2
AFST SPLIT ON PRENICTOR 1l4sA 1.21A131E 10 AFTER CLASS 1
REST SPLIT nN PREDICTOR 1572 1.538995F 10 AFTER CLASS 4

1-STEP LOOKAKFAD TD SPLIT GROUP 3, TOTAL BSS = 9,30558BE J1
1. SPLIT GROUP 2 ON PPERICTOR 1506, BS5 = 4.R43247E 11
2. SPLIT GROUP 5 ON PRENTCTOR 20014 BSS = 4.462341F 11
TENTATIVE SPLIT 1. SPLIT GROUR 3 ON PREDICTINR 1494 WITH ASS = 6.205892E 190
GROUP 4 WITH 155 CASERVATIONS FROM 1| CLASSES = 1
W= 7.03500E 03 Y= 1.68139D 08 YSQ= 4.,918650 12 X=
GROYR 5 WITH 672 OBSFRVATIONS FROM & CLASSES = 2 3 4 5
W= 3,15270F 04 Y= 8.57077N OR YSQ= 2.954780 13 X=

SPLIT ATYEMPT NN GRNUP 5 WITH N = 672, 55 = 6.264T76BBF 12
BEST SPLIT ON PRENICTOR 2001 a.6R07TR9E 11 AFTER CLASS 6
REST SPLIT ON PARDICTNR 1164 1.565314E 10 AFTER CLASS
REST SPLIT O PREDICTOR lane 2.117285E 10 AFTER CLASS
BEST SPLIT QN PRENICTOR 2002 2,523219€ CR AFTER CLASS
REST SPLIT ON PRFDICTOR 1506 4.780164E 11 AFTER CLASS
REST SPLIT ON PREN{CTOR 1458 T.67T254E 10 AFTER CLASS
REST SPLIT DN PREDICTOR 1572 2.B13204E 11 AFTER CLASS

LTI T TR TR TR T}
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1-8$TFP LONKAHRAD TO SPLIT GRNUP 3, TOTAL RSS = 1.030138E 12
1. SPLIT ARAONP 2 N PRENICTNR 14%A, BSS = 6.205892F 10
2. SPLIT GANyP ¢ ON PREDICTA® 2001, BSS = 9,680789%E 11
TENTATIVE SPLIY 1. SPLIT GRAUP 3 ON PRECICTOR 1572 WITH ASS = 3.152271E 11
GPINP 4 WITH &3] CBSFAVATIONS F2OM 3 CLASSES = 3 2 4
W= 2.92770E 04 Y= 7.030220 D8 YSP= 2.184A0D0 13 X=
GROUP S WITH 166 NRSERVATTIANS FROM ] CLASSES = 1
W= 1,02950E 94 Y= 3.22196D0 OF Y5Q0= 1.26184D 13 X=
SPLIT ATTEMPT ON GROUP 4 WITH N = 63ls S§ = 4,3469614F 12
AFST SPLIT AN PRENICTAR 2001 6.060654F 11 AFTER CLASS &
REST SPLIT OM PRENICTORR 1168 6.5200446E 09 AFTER CLASS 3
BEST SBLIY OV PREDICIDR 1009 2.945135E 10 AFTER CLASS 2
BEST SDLIT QN PAEDICTNAR 2002 1.5518G62E OR AFTER CLASS 2
AfFST SPLIT ON PRENICTNR 1506 1.326627F 11 AFTER CLASS 1
RFST SPLIT ON PR2ERICTAR 14€8 2.22259RJE 10 AFTER CLASS 1
RECST SBLIT NN PREDICTCR 1572 1.726276F 10 AFYER (LASS 3

[ I T TR T

1. $PLIT GRQUP T NN PREDICTOR 1572, BSS 3.152271€E 11

1-STEP LOOKAHFAD T SPLIT GPDUP 3, TATAL 438 = ©@,212025F 11
2. SOLIT GROYP 4 (N PREDICTNR 2001+ BSS = 6.060655E 11

06T




xsxsk PARTITIGN (F GROUP ER AL

FROM ELIGIRLE PREDTCTARS ARDUND THE CURRENT RANK 1. 0 UP AND O DOWN
MAXTHMUM ELIGIBLE BSS AT FACH STEP MAXTMUM TOYAL BSS (LOOKAHEAD)
1.5PLIT 3 NN V2001 RSS= 1.11159E 12 SPLIT 3 DN v2001 B5S = 1.11159F 12
2.58L1IT 4 NIN V1506 BS5S5= 2.657B5E 11 SPLIT 4 0ON V1506 8585 = 2.65785E 11
PE{2)= 1,599 10, TNTAL= ]1.3773BF 12 TOTAL= 1.37738E 12

PREQICTAR 2001 HAS RANK |

SPLIT Grnye 3 ON 3I-YR AVE § INC V2001
GRAOUP 4 WITH 705 QRSERVATIONS FROM 2 CLASSES = § 6
W= 3,2%190F 04 Y= 7.89293D 08 YSQ= 2.32347D 13 X=
GROLP 5 wWlTH 122 DNRSERVATINNS FRNM ] CLASSES = 7
W= 6.04300F 03 Y= 2.35924N D& YSO0= L.12317D 313 X=
3 CANRIDATES - HROYP 58
2 2. 010512F 12
4 4.Q7TTIR2ZR 12
5 2.021047E 12

ATTEMPT SPLIT ON GROUP 2 ®RITH 55 = 3,010512F 12

3
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LORKAHEAD TENTATIVE PARTITINN

SPLIT AYTEMPT QN GROUP 2 WITH N = 1261, s5 = 3.010512E 12
REST SPLIT ON PREDICTOR 2001 = 1.8RT7342F 11 AFTER CLASS 3

SYMMETRIC SPLIT INELIGIBLE - RESULTANT GRAOUP TON SMALL
BEST SPLIT OM PREDICTOR 1168 = 1.05444RE 10 AFTER (LASS 4
REST SPLIT ON PREDICTOR 1009 = 2.628780F Q9 AFTER CLASS 5
BEST SPLTT DN DREDICTOR 2002 = 1.279263F 09 AFTER LLASS 1
REST SPLIT ON PREDICTOR 1506 = 1.563909E 11 AFTER CLASS 4
BEST SPLIT OMN PREDICTOR 1498 = PB.0934464F 10 AFTER CLASS 3
REST SPLIT ON PRENICTOR 1572 = 1.372&407E 11 AFTER CLASS 3
BEST SPLIT ON PREDICTOR 1490 = S.62B654FE 10 AFTER CLASS 2

TENTATIVE SPLIT L. SPLIT GROUP 2 ON PREDICTOR 2001 WITH ASS = 1.887342F 11

EXTREME CASES LYING DUTSIDE THE INTERVAL (-2,761231F 04, 5.50B14AF 04)
Y W

HY vilz2z
60000 53.0 3.18000F Co 60000
6000C 48.0 2.880008 04 &0000
60000 $3.0 3, 1800CF Q6 60000
75000 24.0 1.80J00F Q& 75000
GROUP & WITH 859 CBSERVATIONS FRAOM 3 CLASSES = 1 2

3
W= 2,89780E 04 Y= 3.70246D 08 YS50= 6.468470 12 X=

GROUP 7T WITH A£2 OBSERVATIONS FROM ] CLASSES = 4
W= 1.40350E 04 Y= 2.42026D Q8 YS5Qs S.25749D L2 X=

SPLIT ATTEMPT UN GROUP & WITH N = 899, 558 = L1.737%08E 12
BESY SPLIT ON PREDICTDR 2001 6.3B6T72E 10 AFTER CLASS
AFSY SPLIT DN PREDICTOR 1168 5.869928F 0§ AFTER CLASS
BEST SPLIT ON GRENICTOF 1009 3.2088643F 09 AFTER CLASS
BEST SPLIT ON PRENDICTOR 2002 1.898237F {0 AFTER (CLASS
BEST SPLIT ON PREDICTOR 1506 6.039798E 1O AFTER CLASS
BEST SPLIT 01N PREDICTOR 1498 4.410311E 10 AFTER CLASS
BEST SPLIT ON PREDICTDR 1572 6.8607497E 10 AFTER LLASS

[NEWR SN SR

1-STEP LOQKAHEAD YO SPLIT GROUP 2, TOTAL BSS = 2.%4B092F 11
1. SPLIT GROUP 2 ON PRENDICYOR 2001, BSS = 1.A87342f 11
2. SPLIT GROUP 6 ON PREDICTOR 1572, BSS = 6,607497€ 10
TENTATIVE SPLIT ). SPLIT GROUP 2 DN PREDICTOR 1168 WITH RSS = 1.054448E 10

EXTREME CASES LYING OUTSIDE THE INTERVAL (-2.761231F 04, 5.,608148E 04}
Y L L

) ) vi122
£0000 53.0  3.18000E 06 60000
60000 4R.0  2.B8B000E 06 60000
60000 53.0  3.1B000F 04 £0000
75000 24.0  1.80000E 06 75000
GROUP & WITH 1028 OBSERVATIONS FROM 3 CLASSES = 2 3

4
W= 3.85740FE 04 Y= 5.55964D 08 ¥S5Q= 1.068160 13 X=
GROUP 7 WITH 233 OBSERVATIONS FROM 2 CLASSES = 5 6

W= 4,43900E Q3 Y= 5,670810 07 YS5Q= 1.044320 12 X=

SPLIT ATTEMPT ON GROUP € WITH N = 1028, 55 = 2.680100% 12
BEST SPLIT ON PREDICTOR 2001 1.853190€ 11 AFTER CLASS
BEST SPLIT ON PREDICTOR 1168 3.24848BE 09 AFTER CLASS
REST SPLIT ON PREDICTOR 100¢ 4.0R1058F Q9 AFTER CLASS
REST SPLIT ON PREDICTOR 2002 3.002073E 09 AFTER CLASS
BEST SPLIT ON PREDICTYDR 150é& 1.31BO50E 11 AFTER ({LASS
BESYT SPLIT DN PREDICTOR 1498 6.848250F 10 AFTER CLASS
BESY SPLIT ON PREDICTOR 1572 1.070942E 11 AFTER CLASS

NS =AW

LI L I N ]
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L1-STEP LOOKAHEAD T SPLIT GROUP 2¢ TOTAL BSS = 1.958635E€ 11!
1. SPLIT GROUP 2 QN PREOICTOR 1168, B55 = 1.054448E 10
2. SPLIT GROUP 6 ON PREDICTOR 2001, &SS = 1.853190E 11
TENTATIVE SPLIT 1}, SPLIT GROUF 2 ON PREDICTOR 1009 WITH BSS = 2,.6287B0F (9

EXTREME CASES LYING OUTSTDE THE INTERVAL (-2.761231E 04, 5.60B148FE 04}
Y L Wy

vilz22
60000 53.0 3.18000€ 0é& 60000
60400 4R.0 2. RBCOCE Q6 60000
60000 53.0 3.1A000F C6 63000
T5000 24.0 1.80000F 06 75000

GROUP 6 WITH 965 DBSERVATIONS FROM & CLASSES = 2 3 & S
W= 2.90270E Q4 Y= 4.18168D OR YSQ= 7,927970 12 X=
GrROUYP 7 WITH 266 OBSERVATIONS FROM 1 CLASSES = &
We 1.398B60FE 04 Y= 1.94104N 0B YSQ= 3.79799D 12 X=

SPLIT ATTEMPT DN GROUP 6 WITH N = 965, 55 = 1.903773F 12
BEST SPLITY ON PREDICTOR 2001 = 1.086272F 11 AFTER CLASS 3
REST SPLIT ON PREDICTNR 1168 = 1.004661F 10 AFTER CLASS 4
BEST SPLIT ON PREDICTOR 100% = 1.2278RZE 09 AFTER CLASS 2
REST SPLIT OGN PREMDICTOR 2002 = T.34«4226E 09 AFTER CLASS 2
REST SPLIT ON PREDICTOR 1506 = 9.267105E 10 AFTER CLASS 4
BEST SOLI[T (N PREDICTOR 1448 = 4,3134632F 10 AFTER CLASS 4
BEST SPLIT ON PREDICTOR 1572 = 9.,653715E 10 AFTER CLASS 3

1. SPLIT GROUP 2 ON PREDICTOR 1009, 8B5S 2.62BTBOE 09
2. SPLIT GROUP ¢ ON PREDICTOR 2001, ASS 1.086272E 11
TENTATIVE SPLIT 1. SPLIT GROUP 2 ON PREDICTOR 2002 WiTH BRSS = 1.279263E 09

1-STEP LNOKAHEAN TO SPLIT GROUP 2, TOTAL BSS = 1.112560E 11

EXTREME CASES LYING OUTSINE THE INTERVAL (-2,761231F 04. 5.60814RE 04}
¥ W .

WY vilzz
60000 53.0 3.18000F Q6 40000
60000 48.0 2.8B000E 06 #0000
60000 53.0 3.1R000E Q& 40000
75000 2440 1. 80000E 0& 75000

GROUP 6 WITH 878 CASERVATINNGS FROM 1 FLASSES = 1
W= 3,012T0E 04 Y= %.32242D DB ¥YSO= B.258470D 12 X=
GROUP T WITH 383 NBSERVATIONS FROM 2 CLASSES = 2 3
W= 1.28A60E 04 ¥= 1.80030D 0F YS50= 3.46749D 12 X=

SPLIT ATTEMPT N GROUP & WITH N = 878, SS = 2,056949E 12
AEST SOLIT ON PREDICTAR 2001 = 1.65641106 11 AFTER CLASS 3
REST SPLIT ON PREDICTOR 1168 = 1.324876E 10 AFTER CLASS &
REST SPLIT ON PREDICTOR 1009 = 2.674917E 09 AFTER CLASS 3

SEX £ MAR STATUS CONSTANT = NN SPLIT
REST SPLIT ON PREDICTOR 1%CH 1.13A7SSE 11 AFTER CLASS
BEST SPLIT Ov PRENDICTOR 1498 6.668734F 10 AFTER CLASS
AEST SPLIT ON PREDICTDR 1572 1.1T#7T30E 11 AFTER (LASS

(S

1-STFP LNDKAHEAN TO SPLIT GROUP 2. TOTAL BSS = 1,6689030 11
1. SPLIT GRQUP 2 ON PRENICTOR 2002, ASS = 1.279263E 09
7. SPLIT nROUP £ ON PRENICTOR 2001, RSS = 1.456110F 11
TENTATIVE SPLIT 1. SPLIT GROUP 2 ON PREDICTOR 1506 WITH RSS = 1.563009%E I}

EXTREME CASES LYING OUTSINE THF INTERVAL [-Z2.761231F 04, 5.A0B14RE 04}
Y L) LAd vi1z2

£6T



sPLit

AGORO
€000
~0000
75000
GERUP

GROUP

PEST
PFST
REST
RIST
ARST
REST
AEST

1
Ed

BEST
BEST
REST
REST
REST
REST
BEST

1
?

T

seLir
<PLIT
SPLIT
seLrT
SPLIT
SoLiT
$oeL1T

SPLIY
sPLIT
SeLtT
SPLIT
SPLIT
seLIT
SPL1T

53,
42,
51,
Pk,
b WiTH
#=
WITH
=

ATTEYOT 0N GPNUD

e
aN
™
ay
N
o
™

SPLIT ATTEYRT 0N GROUP

0N

oN
ali}
N
aw

2L}
o

TENTATIVE SPLIT 1.

W=

7,45430¢6

[} 3.18000F
2 2, PAQGOE
o 3. 13000F
V] 1. 8003¢CF

160 MRSERVATIANS FROM
04 =
501 ORSERVATINNS FROM
1.84700F 04 Y=

DREDICTOR
BRENICTOR
PRENICTNE
DREOICTNR
PAENTICTNR
DRrNICTNR
PRENICTNR

2001

1168
100e
2002
1504
14%9FR
1572

1=STEP LMK AHFAD TN SPLIT GRNOUP
- SPLIT GROUP
Y« SPLIT GROUP
TEMTATIVE SPLIT 1.

SPLIT GRNUP

673 OBSERYATIONS FROM
2.12T70E Q4 Y= 3,33794D 38 ¥SQ= 6.716940 12 %=
588 (RSERVATINNS FRNM
2,1A360E 04 Y= 2,78479D 0R Y$Q=

BRENILTOR
PRENICTOR
PREDICTOR
PRENICTOR
PRENICTNR
PRENICTOR
PREDICTCR

FXTRFMF CASES LYIMG OUTSIDE THE
Y L] WY
£QG00 1.0 3. 18000F
«0000 48,0 2.PRAQ00E
69090 53.4 3.1R00N0F
75000 24,0 1. A0000OF
GROIjE 65 WITH
W=
GROUP T WITH
W=

20C1
1168
1009
2007
1505
1498
1572

1-STFP LNDKAKEAN YO SPLIT GROUP
. SPLIT GRODUP
» SPLIT GROURP

SPLIT mRAOUP

Ch
aa
0k
[o1.)

#0000
60000
60000
75000

4 CLASSES

= 1

3
3.899580 0B ¥YSQ= 7.9B45AN 12 X=

2 CLASSES

2.22215D0 DR YS0=

& WITH N =

760,
1.10823A87¢
T.T6LTORF
3.64T9IQ4E
2.099249¢
1.6711E6E
1.743782F
T.373901F

5SS
11
09
a9
a9
10

10

10

TNTAL B85S =

INTERVAL
vii22
gn 60000
ca 60000
Ch 60000
] 75000

6 MITH N

NowH kR H

INTERVAL [-2.761231E 04,

5732,
T.1TIT36E
2.382365E
4.610589EF
2+707422E
T.177600RE
3.202777¢
7.081243¢E

2 (N PREDICTNR 1506, RASS
& ON PRENICYOR 2001, ASS

(-2.761231E 04,

3 CLASSES =

2 CLASSFS = f
5.00902D 12 X=

SS
10
09
Q9
09
10
19
10

TNTAL BSS =

2 ON PRENICTOR 149R, BSS
& NN PREDICTCR 1506, BSS =
7 DN PREDICTOR 1572 WITH BSS = 1.372607E 11

1 CLASSES =

= 5
3.74128D0 12

1.7B8043F

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

6T2296E 11
1.563909F 11
1.1083A7E 11

2 ON PREDTCTNR 1498 WITH RSS = 8.093644E 10

1

4

1.504882E

CLASS
CLASS
CLASS
CLASS
CLESS
CLASS
CLASS

1.527125E 1]
8.0935645E 10
T.177608F 10

3

12
3
4
2
2
3
¥
s

[}
X=

12
3

(YRS I N |

5.608148E 04)

3

5.608148E 04}

1.83677D DB Y5Q= 2.9B4820 12 X=

EXTREME CASES LYING DUTSIDE THE
Y W WY vila2
60000 51.0 3.18000F a4 60000
£0000 ¢8.0 2.84C00E 06 &£0000
60000 53.0 3.1800CE 04 60000
75000 24.0 1.80000F 06 5000
GROUP 6 WITH 597 DBSERVATINNS FROM
W= 1.54950E 04 Y=
GrOUP T WITH 464 CBSCAVATIONS FROM

3 CLASSES
2. 75180F 04 Y= 4.28595D 0B ¥SQ= 8.741140 12 X=

2

4

With the 15.66x10' fuom the ginst split on
eity size and 11.08x1070 from a secand split
an {ncome, the fotal power is greaten than
any paix of splits, xﬁz&a?aae group 7 will be
split on eity 44ize (VI506).
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SPLIT ATTF4RT NN GRMYP

AEST
AEST
PEST
REST
REST
REST
REST

SPLTT
SeLIT
SPLITT
5eL1T
SoLIT
seLIT
SPLIT

ON
o
ON
o8
oN
N
o]

PREDTLTOR
PRENICTNR
PREDICTOR
PREOTCTOR
BPRENICTOR
AREDICTOR
PREDEICTOR

T WITH N

2001
1168
100%
2002
1506
1498
1372

1-STEP LNOKAHFAD T SPLIT GROUP

1. SPLIT GRDUP
2. SPLIT crOUP

¥R wa e

24

bbby
1.186411F
2.715812€
2.517631F
5.719982F
9.60799 7€
6,120853F
72.8915523E

TOTAL ASS

SS
11
0¢
[+3:4
09
10
10
10

= 2.065736F 1
AFTER CLASS 3
AFTER CLASS 5
AFTER CLASS S
AFTER CLASS 1
AFTER CLASS &
AFTER CLASS 4
AFTER CLASS 2

2.559018€ 11

2 ON PREDICTOR 1572, ASS = 1.372607€ 11
7 ON PRENICTOR 2001, 855 = 1.186411F 11

SST



FROM ELIGIBLE PRENICTORS ARDUND THE {URRENT RANK

waEwk DARTITINN OF GROUP 7 wwewx

PaXTMUM ELTGALALE ASS AT FACH STEP

Te 0 UP AND 0O DNOWN

MAXTMHIM TAOTAL BSS (LDOKAHE ADY

1.8PLITT 7 DN V2001 P5S= 1.RRT3I4E ) SPLIT 2 ON V1506 BSS = 1.56391F 11
2.5eL1IT 5 DN V1572 P5S= 6.60750F 10 seLIT & N vZ001 RSSs = 1.10839F 11
PE{2)= 1.,586F 10, TNTAL= 2.5%4809E 11 TOTAL= 2.47230E 11
PREDICTAR 1506 HAS RANK 1
SYMMETRY SOLIT Né V2001 = 0Q.C
SYMMETRIC / Méx SPLIT = C.U0 PERCENT

SPLIT pROUD

2 NN LOGST PLAC/SVSA PSU3] thr VIS0A

EXTREME GASTS LYTNG MTSLUGE THE TNTEPVAL (-7.7A1231F 04, S5.608148F 04)
Y W

AQ000
40000
$Q00g
- 75000
[ Al

GFrup

Wy v1i)12?
52,0 3.18000F Q6 60000
“8.0 2.R8000E Q6 69000
3.0 3,18000QF Q4 6000¢C
26.9 1. 82000F C& 75000

6 WITH 501 GBSERVATINNS FRNM 2 CLASSES = 5 &

W= JLR&TOQE 04 Y= 2,223150 QR YSO= 3,74138N0 12 X=
T WITKF TAY [(RSERVATIONS FROYM 4 CLASSES = 1 2 3 4
W= 2,4S5430F (4 Y= 3,.BS257D QR YSO= 7,9R458D 12 X=

4 CANNTOATES - GROUP 5S
s 1.065477€
4 4 D7TIARE
5 7.02]067E
7 1. TBR&4 IE

12
12
1e
12

ATTEMPT SPLITY ON GROUP 4 WITH 55 = 4,0T7T182F 12

Omit the nest of the
splitting pucedd.

9ST



Trwka PARTITION NF GROUP 22 sasew

Fans FLIGINLE FPEDICTARS AFDUND THE CIRRFENT BRANK 1, Q UP AND 0 DOWN

VAXIMUM FLIGIALE B85S AT FACH 'STEP WAXTYMUM TOTAL RSS (LODKAHEAD)

Genup 22 £OULD NOT RE SPLIT

MR RE ST AGE

1 UF THE AMBLYSIS. 12 FIMAL GROUPS, 12 THELIGIBLE FDR SPLITTING.

VAR[ATION FXPLAINFD (RSS10)/TSSE =  39.8% 4 sumary of the Lance within | Al and
between the final groups, Note that with
wedghted data one cannol use the degrees of

I-WAY ANALYSIS NF VARTANCE ON FINAL GROUPS puzedom on odl, o F-Tests
» culat .

SAOURCE SUM OF SQUARES OF MEAN SQUARE

BETWFEN 5.307254E 12 12. 4.422711F 11

ERRR R.QI5140E 172 81524, 9.831658E 07

TOTAL 1.337240F 13 R1536. 1.633931F 08

LST



GaNUP SLIMMARY TARLE

23 GROUPS NF WHICH 12 ARE FINAL

GROUP 1, N = 2388, SUM w = 3.157SQ0F Qe
Y MEAN= 2.007342F C4, VARIANCE= 1.633921F 08, SS{L)I/TSS=
SPLIT ON 3-YR AVE & [NC v BSSIL) = 3.102057E 12

? WITH CLASSES 1 2 3 4
3 WITH CLASSES 5 & 7

GROUP 340N = K27, SUM W = A B852Q00F 04
Y MEAN= 2.65RA1BF 04, VARIANCE= 1.871928F @8, SS{L)/TS5=
SPLIT QN 3-¥R AVE $ INC + BSSIL) = 1.111591F 12
4 WITH CLASSES 5 &
5 WITH CLASSES 7
GROUP 2 ¢y N = 1261, SUY W = 4.301300F 04
Y MEAN= 1.423459€ 04, VAPJANCE= T.0044651F Q7, SStL)/TSS=
SPLIT 0ON LRGST PLAC/SKSA PSU3L1:66, BRSS{L]I = 1.563909F 11

& WITH CLASSES 5 ¢
7 WITH CLASSES 1 2 3 &

GROYP 4 ¢ N = 705, SUM W = 3.251900F 04
Y MEAN= 2,427173E 04, VARIANCE= 1,255571€ a8, SSELI/TSS=
SPLIT ON NIST TO CNTR SM5A  31:58, RSS{L) = &4.S518104E 10
8 WITH CLASSES 2
9 WITH CLASSES E

GROUP 5, N = 122, SUM W = 6.043000F €3
Y MEAN= 3.904084E (¢4, VARTAMCE= 3.372119F 08, SSILI/TSS=
SPLIT ON LRGST PLAC/SMSA PSU31:66, ASS(L) = 1.798738E 11

10 WITH CLASSES 3 4 5 6
Il WITH CLASSES 1 2

GROUP 9 4 N = 312, SUM N = L.462700F 04
Y ME&N= 2.557S18E 04, VARIANCE= 1.A51233E 08, SS{L)/TSS=
SPLIT ON LRGST PLAC/SKSA PSU3L: 6%, RSSEL) = 3.032692E 11
12 WITH CLASSES 3 & 5 A
13 WITH CLASSES 1 2

GRNUP B, N= 393, SUM W = 1.7R9200F 04
Y MEAN= 2.320613E 04, VARJANCE= 9.10271SF 07, SS{L)/TSS~
SPLIT ON LRGST PLAC/SMSA PSU3Lté6y BRSSIL) = BR,140305E 10

14 WITH CLASSES 2 2 S5 6
15 WITH CLASSES 1

GROUP T« N= 760, SUM W = 2.454300F Q¢
Y MEAN= 1.588874E 04, VARIANCE= T.297443F 07. SStLI/TSS=
SPLIT ON CURRENT REGION OV&T72 « BSSIL) = 7,373901F 10

16 MIFH CLASSES 3
17 WITH CLASSES 1 2 4

GROULP 6%, N = 501, SUM W = 1.AR47000E 04
Y MEAN= 1.203654E 04, VARIANCE= 5,780226E 07, SSILY/TSS=

GROUP 11 + N = A6y SUM W = 4.351000E 03
Y MEAN= 4.244310FE 04, VARIANCE= 3.295334E 08, SS(LY/TSS=
SPLIT NN # REQUIRED ROOMS 23:12 o+ BSSIL} = 1.231448€ 10
18 WITH CLASSES 2
L9 WITH CLASSES 3 4 5 6

GROUP  10%, N = 36, SUM W = 1.492000E 03

1.000,
INTO

0.5,
INTO

0.226,
INTO

G.206,
INTO

0.152,
INTO

¢.181,
INTOD

0.122,
INTA)

0.134,

INTD

0,080,

0.106,
INTQ

RES/TS5=

B5$/T18s=

RSS/TSS=

BSS/TSS=

BS5/755=

ASS/TSS=

RS5/T58=

ASS/TSS=

A5S/TSS=

BSS/T5S=

0.232

0.082

0.012

0.003

0.014

d.023.

0.006

0.006

0.001

This is the main nesuld -
2he sptit neeond faom which
the branching diagram ean
be made
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Y MEANs 3.029196E 04, VARIANCE= 2,577897t 08, SS(L}I/T58=

GROLIP 17 4 N = 4631, SUM W = 1.B0A]QOF Q4
Y MEANE 1,692718E Ca, VARIANCE= 7.825983F 07, SS(LI/TSS=
SPLIT DN 3-YR AVE ¢ [N + BSSIL) = 1.00176BE 11

20 WITH CLASSES 12 3
21 WITH CLASSES 4

GROUP  16=, N = 297, SUM W = 6,482000F 03
Y MEAN= 1.299527F 04, VARIANCF= 4.714030E 07, SS{L)/TSS=
GRCHUP 19 , N = 66, SUM W = 3,333000F 03
¥ HMFAN= &4,32T7286E C4, VARIANCE= 3.60B5]5€ C8, SS{LY/TSS=
SPLIT AN CORPFNT REGION QVLT2 » ASSEL) = 1,%138R9E 11

22 WITH CLASSES 2 &
23 WITH CLASSES 31

GROUP  1Re, N = 21, SuM w = 1,01A000F 03
Y MEAN= 3.,939901F na, VARIANCE= 2.27%338EF 08, SS{L)/TSS=

GenuP 17w, N = 1HB, SUM W = A,578000F 03
Y MEAN= 2.17514AE 04, VAR[ANCF= 1.3A6RHA2E QR, SS(LI/TSS=

CROUE  15%, N = 176, SUM v = T.556000F 03
Y YEANS.2.5700R4F (4, VARIANCE= 1,244%&1F 09, SSULLI/TSS=

GRNUP 134, N = 124, SUM W = 6.049000F 03
Y MEAN= 3,000782F 04, VARTANCE= 1.534795F 0OR, SSIL)/TSS=

neONE  21%, N = 181, SUM ¥ = T.2R90NDE 03
Y MFAN= }.Q757830 04, VAPJANCE= 5.6202R6E 07, SS{L)/T55=

GROUIP Lo, N = 218, SUM b = 1.0%3600F 0%
Y 4E&N= Z2.13R260F Ca, VARTANCE= S,910Q378E 07, SS5(LI/TSS=

GROIP 20%, N = 242, SUM W =  1.067700F 04
Y MEAN= 1.4GKRT%2E 044 VARIANCE= S.66K8S0E 07, SSILY/TSS=

GROIP P3e, N = 31, SUM W = 1.4R3I00QF 03
Y MEBR= 4,9R2]159F 04, VARTANCF= 2,220R?AF QR, SSCL}/TSS=

Gefue 22, N o= Aa, SUM W = 1.6800000 03
Y “EaN= 1.67I51GS GA, VARIANCFE= 3,723A1297 C9, SS1L1/T55=

0,032,

0,106+

INTD

¢.02%,

0.089,

INTD

0.017,

0.089,"

0.070,

0.069,

0.053,

0.046,

0.045,

0.039.

0.039,

RSS/T55=

ASS/TSS=

RES/TSS=

ASS/TSS=

RSS/TSS=

BS55/ TS5«

B55/T55=

BSS5/TS8S=

RSS/TS5S=

RSS/TSS=

ASS/TSS=

R55/T155=

RS/ T3S=

0.0

0.008

0.0

0.011

9.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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100%BSS/TSS TABLE F(OR 1-STEP LDOK-AHEAD
23 GROUPS, A8 PREDICTNRS
< TNDICATES LESS THAN 2 SPLITS WERE MADE

PREDICTOR GROUP NUMBER (# INDICMES THE GROUP LS FINaL}
1 3 4 % 11 0% 17 16% 19 18%  12%  15%  13x  21® 4%
2001 3.6 1003 1. 2,7 seews< 2.0 L.l 1.2 0. 3CkRsksawwand 1.3 O I(HemomckmEshd 0.0<  0.6<  0.5<{vseExd 0,24
116R 18,8 7.2 1.5 1.7 1.4 2.3 0.8 1.0 0.1< 1,2 0,1< 0.9 0.0< 1.2 #k&sk< 0,2< 0,1< 0.2¢ 0.2¢ 0,H¢
1009 21%9 6.6 0.8 1.6 1.6 2.2 0.R 0.9 0,0< 0.9 0.2¢ 0.8 0.0¢ 1.1 0.3< D.1¢< 0.0< 0.2< 0.5¢ 0.1<
2002 21.6 7.8 1.3  1.® 1.4 2.2 0.T 0.7 0.0¢ 0.0¢ 0,0¢ 0.7 0.0{ 0.0¢ 0.0¢ 0.0¢ 0.0¢ 0.0< 0.0< 0.1<
1804 22.7 7.0 2.0 2.3 2.1 2.5 1.2 0.6 ¢.0¢ 1.0 0.3< 0.7 0.0< Q.9 0.3< O.l<exnreg 0,1< Q1< 0.0<
1498 19,0 7.7 1.1 2.6 1.9 1.4 0.9 1.1 0.1< 0.8 0.0¢ 0.9 0.0¢ 1.0 0.1< 0.0¢ 0.0< 0.3< 0.2< 0.1¢
1572 18,6 B,% 1,5 2,2 1,7 1.7 1.1 1,3 0.1C 1,0  0,0¢ 0.9 ¥R«a#< 1,4 0. 1< 0,0¢ 0.6K D.4C €,0¢ 0.0<
1450 3,06 C.7¢ D.7¢ 0.5¢ 0.2¢ 0.0¢ 0.4< 0.6< 0.3¢ 0,3¢ 0.0¢ 0.2¢ 0.2¢ 0,0¢ 0.0¢ 0,0¢ 0.5¢ 0.0¢ 0.1¢ D.1<
PRENICTOR GROUP NUMRER (% INDICATES THE GRDUP 15 FINAL)
20% 23 22%

2001 Delusrrx{axknD

1168 0.0¢ 0.2¢ 08.7¢

1009 0.1¢ 0,1< 0.2¢<

2002 B.1< Q.0Cwwn%ng Comparison of this table with the next one shows

1504 0.1< 0.0¢ 0,6< where the tockahead neveals more fwo-split powen

1498 0.1<¢ 0.3¢ 0.3¢ in sefecting an infenion predicton fon the finst

1572 0.2¢ 0.0¢ 0.C< sptit -

1490 Ovlcesdnic 0.C< See gups ¢, 4, 7 fon example.

091



A PRENICTORS

100*ASS/TSS TARLE FOP O-STEP LOOK-AHEAD
23 GROUPS,

INDICATES THE GROUP IS FINAL)

GROUP NUMRER (=

PREDICTOR

1L 10* 17 16% 19 18+ 12% 15% 13* 1% 14 %

%]

NQm OO
L N

OO0 000

O.5hxkkss

0.4
.
-
.

-
ONHD~00O0
s s s 4 s 4w
oCOoOOCODOOD

BN OM D
N

L -N-N-N-R-F-]
*

Dederxrnrrtanas
.
.

»
MmO O~ ANN
" e o 4 e a4

[CR-N=R-RRsN-N]

~NOMOCO
RN
[+ RNy )

H~OQOoTMM
R

copoooD

EXERRERK ERNE

MmO OO m e

€ m SO =L
L e e

.
j=jejajalieeR--)

P Q8 Nt
¢ 4 4 6 s 4w

[eR«R= NN oNo )

Dt AN~ D
e e e e boa .

—“~OQONCQO

4O ONDD
« 8 e 3 e e

—~ OO0 ~O~D

PN By~
a8 s 8 o2 mor e

MoCcCOoOMOND

MmMoMer~onmo
RN s

MO M BT
~

2001
1168
1009
2002
1506
1498
1572
1490

GROUP NUMAFR [* [NDICATES THE GROUP 15 FINAL)

PREDICTOR

23* 22*
0. e wkkokdokiok b
»

0.0

.2

20%

161



TO0O*RSS/ TS5 TABLE FOR Q-STEP LOOK-AHEAQD
23 GROUPS, 8 PREDICTYORS

MAXTHUM RSS REGARDLESS (F ELIGIBILITY

PREDICTRR GROUP NUMBER {# INDICATES THE GRNUP 1S FINAL)
3 2 4 L 9 ] 7 &% 11 10¥ 17 16% 19 i8s 12+ 15= 13* 21* L4*
2001 23,3 8.3 1.6 1.5%kkbns 1.0 0.7 0.R QL 3FRRTTRERTHEN 0.8 D, 3rnreRpkdbans 0.0 . D.58%ssu ¥ 0.2
1158 2.0 O.1 0.1 c.1 0.2 0.4 0.1 0.1 0.2 0.1 a.1 0.1 0.0 Qo 3¥*ksnn 0.2 0.1 0.2 0.2 0.0
1000 .3 0.2 0.0 0.1 1.0 0.0 0.1 0.0 0.0 0.6 0.2 0.0 0.0 0.4 0.3 0.1 0.0 0.2 0.5 0.1
2007 2.9 0.0 0.0 0.0 0,2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.1 0.0 6.0 0.0 0.0 0.1
1506 Q.7 F.h 1.2 2.0 le4 2.2 0.6 0.1 0.0 0.0 0.3 0.1 0.0 0.1 0.3 ISR L g 0.1 0.1 0.0
1498 5.0 0.5 0.6 0.3 0.6 0.5 0.1 d.1 0.1 0.4 0.0 g.1 G.0 0.5 0.1 0.0 0.0 0.3 0.2 0.1
1572 4.3 2.4 1.0 1.3 1.2 0.7 0.5 0.6 0.1 Q.7 0.0 0, 2%kkuks 1.1 0.1 0.0 0.6 Qué G.0 0.0
1490 1.0 0.7 C.7 C.5 0.2 0.2 0.4 0.6 0.3 0.3 0.0 0.2 (te2 0.1 0.2 0.0 0.5 0.3 0.1 0.1
PREAICTAR GROUP NUMBER (* ENODICATES THE GROUP 1S FINALJ
20% 23 22%
2001 Qelantdtasdssns
1168 2.0 0.2 0.2
100© 0.1 0.l 0.5
2002 0.1 O.Qussnss
1506 0.1 0.0 0.0
144P 0.1 g.? 0.3 .
15712 G.2 0.0 0.0
1490 Jelkkaxgn .0

29T



CLASS
1
YHE AN
2 N
YME BN
i N
YME BN
4 N
YHE AN
s M
YHMEAN
6 N
YMEAN
7 N
YHE AN
CLASS
1 N
YHMEAN
2 N
YMEAN
3 N
YMEAN
4 N
YMEAN
5 N
YMEAM
& N
YMFaN
TN
YHEAN
CLASS
1N
YMEAN
2 N
YMEAN
3 N
YMEAN
TN
YMEAN
cLass
2 N
YHEAN
AN

b
254
1.053E
257
1,323
86
1.40RE
62
1.724E
497
2.259F
208
2.799E
122
3.904E

0.0
0.0
0.0

0.0

1

661
1.762¢

557
2.122E

Q4

04
a4
04
04

04

04

04
a4

04

04

04

PROFILE OF CLASS MEANS BAND SLOPES

3-YR AVE % INC + ETA = 0.351
GROUP
3 2 4 5
4 256 " Q 0
0.0 1.053F 04 0.9 Q.0
[ 257 0 Q
c.o 1.323F 04 0.0 0,0
o 386 [+} 0
0.0 1.408E 04 0.0 0,0
1] 362 a ]
c.o 1.724F 04 0.0 u.0
457 0 497 o]
2. 259E €4 0.0 2.259E 04 0.0
208 0 208 Q
2. T99E 04 0.0 2.799E 04 0.0
122 0 [°] 122
" 3.904E Q4 0.0 0.0 3.904E 04
3-Y® AVE $ INC s ETA = 0.351
GROUP
11 16¢ 19 18%
S4 61 0 0
1.254E 04 9.TIQ0E 03 0.0 0,0
-k - 1t] 0 [}
1.636F 04 9.727€ 03 0.0 0.0
145 100 [+ 0
1.505F 04 1.526E 04 0.0 0.0
152 75 [+] D
1.576E 04 1.450€ 04 0.9 0.0
a 0 [ .0
0.0 0.0 0.9 0.a
0 0 0 ]
0.0 0.0 0.0 0.0
0 0 65 21
¢.0 0.0 4.337€ 0& 3.940E 04
3-YR AVE § INC ¢ ETA = 0,351
GROUP
23 2z
1] o
0.0 0.0
q
0.0 a.0
0
8.0 0.0
31 34
4.982E G4  3.480FE 04

# REQUIRED ROOMS 23:12 , ETA » 0,024

GROUP
3 2 & 5
186 475 155 31
2. 546E Q4 1.413E 04 2.347E 04 3.546E 04
262 295 232 30
2.676E 04 1.481E 04 2.457E 04 4.352E 04

(=3 oo

2.135E

2.347TF

0.0

9

T3
2.540F

102

2.591E 04

04

04

om

9.0

2.157E 04
127
Z2.636E 04

2.346E 04
2.910E 04
¢}

0.0

B

82
2.182E 04

130
2.353E 04

T

115
l.174E 04

143
1.475E 04

3.528E 04
g

G.0

1

256
1.561E 04

180
1.655€E 04

5%
141
9. 061E O3
114
1.164E 04

1.245E 04

1.442€ ¢4

bHe
21¢
1.236€ 04
115
1.230E 04

a
o

86
4.244E 04

0.0
154
2.038E 04
b4
2.371E 04
o

g.0

11

21
3.940€ 0%

23
4.T93E 04

£97



4 N
YMEAN
S N
YMEAN
H N
YMEAN
CLASS
2 N
YHEAN
3 N
YMEAN
4 N
YMEAN
5 N
YMEAN
6 N
YMEAN
CLASS
2 N
YMEAN
3 N
YMEAN
4 N
YME AN
5 N
YMEAN
& N
YMEAN
CLASS
2 N
YME AN
3 N
YMEAN
4 N
YYEAN
S N
YME AN
& N
YMEAN
CLASS
2 N
YMEAN
3 N
YHE AN
4 N

“R6
2.256E

225
1.999E

159
1.998E

104
10
2.7107€
7
2.755E
13
3.080¢€

3
4.125E

3
3.430E

1.232€

1

ar2
1.587E

530
2.370E

419
2.134E

374
1.908E

329
1.830E

10*
3
3.191€

9
3.b28C
13

c4
04

04

04
04
04
a4

q4

c4
04
04
04

04

04
04
04
04

04

04

04

728
2.803E

13
2.590F

ar
2.442E

D4
04

04

258
1.456F D4

141
1.308E 04

Q2
1.207E 04

187
2.549E D4
T2
2.316E 04
59
2.157E 04

# REQUIREDN ROOMS 22:12 , ETA

¢ REQUIREN ROOMS 23:12

23%
C
c.0
12
5.154€ 06
12
5.CSSF 04
4
S.CLSE 04
3
3,651E C4
BKT AGE
3
152
2.5T4E G4
276
2.844E Q6
243
2.5L1E a4
123
2.625E 0%
33
2, TBSE Cé
BKT AGE
17
84
1.601E 04
113
1.T61E D4
173

04
ca
04
[+T3

a4

16%
Te
1.236E 04

1.403F 04
1.226E 04
1,112E D04

1.39AE 04

22%
o]
0.0
11
4.324F 04
16
31.366E 04
5

1.091E 04

2
4.497F Q&

HEAD 9Y¥1009

2

220
1. 404F 04

254
1.502F 04

236
1.413€ 04

255
1.442E 04

296
1.38BE 04

HEAD 9V1Q09

16%

61
1.271E 04
62
1.322€ 08

GROUP

1¢
Q
0.0
23
&,T93E 04
28
4.156E 04
9

3,937E 04

]
4,00Q4E 04

. ETA

GROUP

2.379E 04
2.561E 04
2.315E 04
2,347E 04

2.647E 04

+ ETA =

GROUP
19

L]
S5.154E 04
2%
4.485E Oa
25

41
3,843E
12
3.981¢
[

3.780F

0.026
18%
21
3.940F
0
0.0
]
0.0

0
0.0

3
4.252E

0.049
lax

1
3.000E

&
3.65TE
5

04
A4

04

06

04
a4
04

04

Q4

0%

1.807E

2.643E

12#%
34
2.220€

2.037€
55

04

. 04

04

o4
o4
o4
04

(2

04
04
04
04

04

04

04

2.367E

2.709E

2.651E

04
04

04
04
0%
04

04

Q4
04
04
04

04

Q4

D4

2.882€

8
2.229F

1.590€

= 04

04

o1

04
(3
04
04

04

04
04

04

04

04

04

1.167E

0n

Qo3

- 04

(1

04

= 0

Jb

4

04
04
04
04

04

04

04

28
4.156E
g

3.937E
5

4. 004E

2.011E

L
7.500E

+13
U4

s

96
04
04
04

04

04
04
04
04

04

Q4

04

%971



- THEAN
5N
YME AN
6 N
YMEAN
CLASS
2 N
YMEAN
3N
YME AN
4 N
YME AN
5 N
YHEAN
& N
YMEAN
CLASS
10N
YHE N
2 N
YMEAN
ERY
YMEAN
CLASS
1N
YMEAN
2 N
YHEAN
3N
YMEAN
CLASS
1 N
YMEAN
2 N
YNEAN
32 N
YMEAN
fLASS
1 N
YHE aN

2 N

2.62SE
- 9
3.067E
2

2.500E

1.542E

1
1660
?.10%E

82
1.443F

346
1.5B0E

122
1.83£E

633
2,593
463

04

04

04

04
o4
04
04

04

04
04

a4

04

04
04

ga

oL

1.756E G4 1.313F 06  3,654E 04  3.861F 04 2.11TE 04
a5 57 6 11 25
1.644E 04 1,356E 04  4.BOSE 04 3.425E 04  2.285F 04
09 40 1 0 14
1.7056 64  1.258E 04 7.500E 04 0.0 2.6B3E 04

BKT AGE HEAD 9V1009 s ETA = 0.049
GROUP
23% 22+
6 2
5.388F 04  4.300F 06
13 12
4, 755E C4 4.170E Q4
s 16
4,759€ £4  2.942E 04
3 3
5.757€ C4  3.R38E 04
[i] 1
¢.0 7.500F 04
SEX £ MAR STATUS + ETA = 0.029
GROUP
3 2 4 8 9
782 R78 hb4 118 297
2.665E 04  1.435F 04  2,433E 04  3.883E 04  2.569F 24
17 85 14 3 7
2.268F €4  1.171F 06 1.916F 04 4.032F 04  2.052E 04
28 318 27 1 8
2.686E C4 1.450F Q& 2.546E 04 &.G00E Q4 2.596E 04
SEX £ MAP STATUS + ETA = 0,029
GROUP
17 16% te 10% 12
25¢ 205 84 20 179
1.7276 04 1,309 04 -4,312F 04  3.B67F 04  2.194F 04
23 18 0 1 5
1.309E 04  B.208E 03 0.0 5.500F 04  1.582E 04
144 T4 1 0 4
1.686E 04  1.418F 04  6,000E 05 0.0 2.107F 06
SEX E MAP STATUS » ETA = 0.029
GROYP
23* 22*
30 a4
4,551F ¢4  3,6006 04
v} 0
¢.0 0.0
1
&.CCOE Q&4 0.0
LRGST PLAC/SMSA PSU31:66, ETA = 0.123
GROUP
3 2 4 5 °
326 307 2606 &0 91
2.100F Q4 1.673E Q4 2.B00E 04 4.27THE D4 2.1A7TE 04
212 211 196 26 33

2.592E 04  2.853E 04
25 16
24323F 04 2.999€ 04
& 1
2.687E 04  2.100E 04
8 7

367 501
2.321E D4 1.609E D4
T &1
1.759E 04 1.161E 04
19 218
74522 04 1. 6308 04
15% 13%

167 118
2.583F 04 3.100E 04
Q 2
0.0 3. 263F 04
8 &
2.187E 04 3.026F 04
8 7
175 307
Z.570F 04 1.673F 04
152 231

2.018E 04
29

1.869E 04
12

3.048E 04

h*
ar7r
1.218BE Q4

1.1848 04
100
1.162E 0«

71
157
1.978E 0s
3
1. A14E 04
21
1.984E 04

1.997F 04
31

2.073E 04
9

2.626F 04

11
13
4.209E 04

1
5.5008 D&
1
6.000E 04

lax
250
2.119F 04

1.759E 04

2.67T7E 04

11
60

4 2746 D4
26

S9T



2

cLASS

1
2

3.

CLASS

YMEAN
N
YMEAN
N
YME AN
YME AN

N
YMEAN

YHMEAN
YMEAN
N
YMEAN
N
YHMEAN
N
YMEAN

N
YMEAN

YMEAN
N
YME AN
N
YMEAN

YMEAN

N
YHEAN
N
YME &N
N

YMEAN
N
YUEAN

N
YMEAN

YMEAN

2.154E

1.855€
144
1.846E

1.578¢
448
1.394E

kLT
1.885€E
582
2.2R0E
3¢
2.504E
255
1.739E
539
1.597E

10%

4
2.566E

oo
04
04
[iT8

04

04
04
04

04

04

04

o4

04
04
04
0%

04

04

2.542E Q¢
2-305F 0%
2.369E 04
24.248E 04

Z.101E Q4

1.622F 04
1.463E 04
1.495E 04
1.245E€ 04

1.185€ 04

2.306E 04
2.164E 04
2.182E 04
2.068E 04

2.120E 04

LRGST PLAC/SMSA PSU3L:66, ETA

17

217
1. 760E G4

121
1. 742E Q4

1.585E C4

1. 556E C4

DIST TO

3
155
2.390E 04
306
2.656E Ca
170
3, 104F 04
69
2. 404F Co
127
2.516E 04

DIST TO-CNTR SM5A 131:58, FTA =
GROUP

17
118
1.532F 04

16
1.198¢ 04
1.389E 04
1.261E 04

1.276F 04

22+

27
3.619€ 04

7
3.914F 04

CNTR SH$A

z
231
1.3R6F 04
276
1.670F 04
166
1.617F 04
176
1.392E 04
412
1.243E 04

16*
99
1.289E 04

. GROUP

19

48
4.224E 04
17
4.6TIE 04
o

PLAC/SMSA PSU31:46, ETA =
" GROUP

31:58, ETA
GRQUP

&4
136
2.218E 04
257
2.373E 04
144
2.797E 04

2.293E 04

2.307E 04

g
12
3.422E 04

3.082E
8

3.462E
5

1.809€E

0.123
18%
12
4+490E
9
3.192E
0
0.0
0.0
]
0.0

0.0

0.123

3,146E

0.072

1A=
E]
4.983E

04
o4
04
04

a4

04

04

o6
04
04
04

[+13

04

2,1B9E 04
60
2.035€ 04
1]

0.0
1
2.000E 04
&

1.T68E 04

15=
175
2.570E 04
o
0.0

0.0

)
136

2.218E 04
257

2.373E 04
a

0.0

15%
57
2.522E 04

1,622 04
132
1.463E 04
90
1.495€ 04
0
0.0 .
]
0.0

13*
3.1B7€ 04
2.849E 04

4]
0.0
0.0
0.0

0.0

1. 446E 04
1.681E 04
1. T64E D&
1,481E 04

l.494E 04

0.0
0.0

0.0
140

1.245E
361

1.18B5E

1.954E
0
0.0

0.0

04

04

0

04

03
04

o0&

[+13

4.169E G4
0
0.0

0.0

]
0.0

o]
0.0

14%
0
G.0
153
2.189E 04
60
2.035E 04
o

0.0
1
2.600E 04

“ -
1.768F 04

11

15
3.731FE 04

45
4.085E 04

20
5.072E 04

3
3.T02E 04

3
4,000E 04

14%
79

© 2.023E Q&

99T



2 N
YME AN
2 N
YME AN
4 N
YMEAN
5 N
YMEAN
CLASS
YME AN
2 N
YHEAN
3 N
YMEAN
4 N
YMEAN
5 N
YMEAN
CLASS
1 N
YMEAN
2 N
YMEAN
3 N
YMEAN
4 N
YHMEAN
CLASS
1 N
YMEAN
2 N
YMEAN
3N
YMEAN
4 N
YHEAN
CLASS
1 N
YMEAN
z N
YHEAN
3 N
YMEAN

4 N

&4
3.4TTE
-]
2. 174E
4
2.077E
18
2.373E

1.432€

1

364
2.494E

617
1.9888

790
1.595E

317
2.133E

04
a4
04

¢4

04
04
04
04

Q4

04
04
04
04

L}
04
04

04

04

04

DIST TO

23%

4
4. T22€
18

4. 535F
8
6. 213E
I
5.0C0E
2
4,000E

CURRENT

3

166
3.133E

2r8
2.526E

193
2.364E

150
2.5517€

CURRENT

17
152
1.624E
185
1.62SE
0

0.0
126
1. 89CE

CURRENT

23=

247

5.013E
[

£ 04,

Q4

a4
a4
TS
[+

s

Q4
[+L3
U4

04

04

c4

04

04

04

CNTR SMS5A

223
8
2.804F
17
4.067F
7
4,085E
2
2+ 850
[+}

0.0

REGION

2

168
1.611E

329
1.453E

597
1.185E

167
1.710E

REGION

16%
0
0.0
0
0.0
297
1.300E
1}

0.0

REGINN

2z
.0
0.0
24
3.627E
a

0.0
10

04 b,
Q04 Se
04 3.

04 be

04
04
04

04

ovaT2

04 2e
04 2.
04 2.

04 2.

ovatr2

5.
3.
o4 ba

3.

ovar2

32

30LE 04
15

281E 04
3

T02€E 04
3

Q00E 04

31:58, ETA =

GROUP

. ETA =
GRAUP
&

164

B12E 04

242

319E 04

168

137E 04

131

422E 06

+ ETA =
GROUP
19
24
013E 04
24
627E 04
7

B62E 04
10
BI9E 04

vy ETA =
GROUP

13
3.544E

5
4. 348E

0
g.0

9.0

0,072

18*
&
3.982¢
9
4,278E
5
3.502E
3

3.504E

0.063

04

04

Q4
04
04

04

04
04
04

04

0.0
42
2.133F

2,250E

2.190E

04

0%

04

04

04

04
D4
04

04

118
24592F
0

0.0

[+
0.0

0
0.0

2.381F

2.618E

04

04
04
04

04

04
04
04

04

0
Q.0
102
3.054F
15
2.935€

T
4.071E

152
1.624E
185
1.5629€
297
1.3 00E
126
1.890F

2+ 860E

04

04

04

(1

04

04

04

04

86
1.991E
21
2.252E
22
2.157€
£l
1.820E

6%
16
1.458E
144
1.271F
300
1.103E

1.319E

Q4
04
04

04

0%

[+

04

g4

04

a4

139
2.203F

2.197E

04

[153

04

04

0
04

04

9T



YME AN 1.776E C& C.0 3.RI19E 04
‘RACE 31:48, ETA = 0.030
GROUP
CLASS 1 2 2 3 5 9 g 7 6% 11
iow 1626 154 872 636 114 301 335 470 402 83

YVEAN ?.069F D4 2. 685F 04 1.479F 0¢ 2.446E 04 A,945E 04 2.549E Q& 2.357€ 04 1.652F 04 1.246E 04 4.302€

72 N 40h s7 3&9 54 3 Q 45 256 a3 3
YOUF A 1.178% Q4 1.933F ¢4 9. 6537 03 1. TOTE 04 2.758E 04 2.301F Q04 1.551t Do 1.080E 04 T.418E 03 2.TS8E

LR 56 16 0 15 i 2 13 34 6 0
YHE AN 1.287E 04 2.B05F Q4 1.533F 04 ?.912E 04 2.700E 0% t,095F 04 2.582F 04 1.660E 04 8.772E 03 0.0

RACE 31:48, ETA = 0,020
GROUP
£1. 488 10* 17 16 10 1A% 12% 15= 13% 21% 14%
1 N 35 ek 124 63 20 183 139 118 143 196
YUFAN 2.038F 04 1.727E C4 1.398F 04 4.3TTE 04 4, 050E O4 2.171E 04 2.645E 04 3.,082E 04 2.016E 04 2.146E
2 N 0 <1 165 2 1 4 31 5 28 14
YMEAM 0.0 1.231F Ca 5.6S3E 03 3.136F 04 1.,R00E 04 2.123€ 04 14391E 04 24651E Q4 1.220E 04 1.690E
R L 24 A 9 4] 1 S 1 10 B
g an 7.700F 3& 1. 6B6E C4 1.5908 04 8.9 0.0 2.BODE 06 2.509E D& 5.500F 0& 1.777E 04 2.6C9E
RACE 31:48, FTA = 0.030
GRAUP
fLASS 20® 21s 22%
1 N 207 21 22
Y¥E LN 1.515F )4 4,982F G4 2. 715F D4
72 M &2 0 2
YUE AN 1.2358 ¢4 0.0 3.186F 04
1 N 16 4] 0
YHEAN 1.625€ 04 c.n 0.0

89T
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I:iA inble géueilzuch the aagiﬂaA
e previous La but in a difg-
PREDTCTOR SUMMARY TABLE. 23 GROUPS ‘e e bersome formar

We omit 2] pages af it.

3-YR AVE $§ INC ¢ ETA =
GROUP CLASS [ W PCT  PCT SUM PCT  PCT MEAN VAR TANCE SLOPE
1 . GROUP TDTAL  GROUP TOTAL } o
1y 256 EB8C5.0 10.8 10.8 9.271272€E Q7 5.7 5.7 1.052955€ 04 4,233778E Q7
z 257 7736.0 9.5 9.5 1.023791E 08 6.3 6.3 1.323411€ 04 7.0768661€ 07
3y 186  12437.0 15.% 15,2 1,751%3E 08 10.7 10.7 1.408332E 04 6.07T8S9E Q7
4 ¥ 362 14035,0 17.2 17.2 2.420264E 08 14.8B 14.8 1.724449E 04 7.744030E Q7
5y 487  22398,0 27.,% 27.5 5.06037S5C 08 230.9 30,9 2.259298E 04 1,1B97T8E 08
6 Y 208 1C121.0 12,6 12.4 2.832548E 08 17,3 17.3 2.798684E 04 1,20615BE OB
7Y 122 6£043.0 Teh ~ Tub  2.359240F 08 14,4 16,4 3.904088EF D& 3,3721L4E 0B
ETA = 0,351, ETA(NSTEP) = 0,314, ETA(O) = 0,233
GROUP CLASS N W PCT PCT syM PCT  PCT MEAN VAR IANCE SLOPE
3 GROUP TOTAL GROUP TOTAL
s Y 497  22398.0 %8.1 27.5 5.0603756 08 49.4 30.9 2.259298F 0¢ 1.18977BE 08
6 ¥ 208 10121.,0 24,2 12.4 2.832548F 08" 27.6 17.3 2.798684E 04 1.206158E 04
7Y 122 6043.,0 15.7  T.4 2.359240F 08 23,0 1la.4 3.90408BE 04 3,3T2114E 08
ETA = 0.182, ETA(NSTEP} = 0,191, ETA(Ol = 0,154
GROUP CLASS M W PLT PCT SUM PCT  PCT ME AN VAR IANCE sLOPE
2 GROUP TOTAL ~ GROUP TOTAL
1Y 256 e8g5.0 20,5 10,8 9.271272E 07 5.1 5.7 1.052955E 04 4%,233778E 07
2y 257 7736.0 18,0 9,5 1.023791€ 08 16.7 6,3 1.3234L1E Q4 7,076641E 07
3y 386 12437.0 28.9 15.2 1.751543E 08 2B.6 10.7 1.408332E Q¢ 6.077859E 07
4 Y 362 14035.0  32.6 17.7 2.420264E 08 39,5 14,B 1.724449E 04 7.744030E 07
ETA = 0.085, ETA(NSTEP] = 0.085, ETAIO) = 0,063
GROAUP CL ASS N W PCT  PCT SUM PCT  PCT ME AN VAR [ANCE SLOPE
& GROUP TOTAL GROUP TOTAL
s ¥ 497  22398.0 68.9 27.5 5.060375E OB 64.1 30.9 2.259298F 04 1.189778E DA
6y 208 10121.0 31,1 12.4 2.R32548F 0F 35,9 17.3 2.7986R4F 04 1.206158E 08
ET4 = 0.050, ETA(NSTFP) = 0,073, ETA(d} = 0.05¢C
GROUP CLASS N W PCLT  PCT SUHM PCT PCT MEAN VAR [ANCE SLOPE
5 GROUP TOTAL GROUP TaTAL
7Y 122 €043,0 100,86 7.4 2.359240€ 0B 100.0 14.4 3.904088E 04 3.372114E 08
GRDUP CLASS N W PCT  PCT SUM PCT  PCT MEAN YAR [AMCE SLNPE
L3 GRDUP TNTAL GROUP TOTAL [r3
5 ¥ ?31 10618.0 T72.6 13.0 2.518379E 08 67.3 15.4 2.372472E 04 1.590032E 08
& ¥ a1 4012.¢ 2T.4 4,9 1.2225Q2E O8 32.7 7.5 3.047113E 04 1.500305€ 08
ETA = 0.055, ETA(NSTEP) = @.l10, FTALO) = Q,055
GROUP L1 ASS N W PCT  PCT Sus PCT  PCT MEAN VAR IANCE SLNPE
8 GROUP TOTAL GROUP TATAL
s ¥ 266 11782.0 6£5.9 14.4 2.541996E 08 61.2 15.5 2.157342E 04 8.119678E 07
384 127 6109.0 34,1 7.5 1.610044E G8 3B,8 9.8 2.635531F D4 9.559144E OF
ETA = 0.057, ETAINSTEP) = (.(89, FTA(O) = 0,057
GROUP CLESS N W PCT  PCT SUM PCT  BCT ME AN VAR {ANCE SLOPE
7 GROUP TOITAL GROUP TOATAL
1y 115 36R1.0 L15.0 4.5 4,321102E 07 1l.1 2.6 1.173B93E 04 4,820251€ 07
2Y 143 3964.0 16,2 4.9 5.R484A3F 07 15.0 3.6 1.475399F 04 06.323427E Q7
3 ¥ 245 72%9.0 29,6 B.9 1.096388F 0B 28,1 6.7 1.510385€ 04 5.TTB098E 07 E;
“ Y 257 $639.0 39,3 11.8 1.786229F 08 45.8 10.% 1.B857127E 04 B.392960E 07 e
ETA = 0,078, ETA[INSTEP) = 0,087, EVALD) = 0,062



SROUP.

6%

GROUP
1

GROUP
1o0%

GROUP
17

GROUP
les

GROUP
19

GROUP
18%

GROUP

12%

GROUP
15%

GROWP
13=

GROUP
21*

CLASS N
1Y 141
2y 114
3y 141
4y 165

ETA = 0.053,

CLASS N
7Y 86

CLASS N
7Y Y

CLASS N
1y 54
2 ¥ CH]
3y 145
sy 181

ETA = 0.082,

cLass N
1y 61
2y 60
3y 100
3 ¢ 7%

ETA = 0,131,

CLASS N
Ty &5

CLA&5S N
T Y 21

cLASS N
5 v 151
Ay 35

ETa = 0.005,

CLASS N
5 Y 112
6 Y 63

ETA = 0.061,

CLASS ]
s ¥ 78
6 Y 48

FTA = 0.078,

£LASS N

4 Y 181

"5124.0
3772.0
5178.0
4396.0

ETA(NSTEP}
W

4351.0

W

15692.0

W

2101, 0
3003.0
5388.0
P389.0
ETAINSTEP)
W

1380.0
961.0
1A91.0
2250.0
ETA(NSTER)
W

3333.0

]

lo1a.0

W

6943.0
1635, 0
ETA{NSTEP)
W

4555,0

3001.0
ETA(NSTEP}

_PCT_ _PGT
GROUP TOTAL
27.7 63
20.4 4.6
28.0 6.3
23.8 5.4
= 0.038, E
PCT PCT
GROUP TOTAL
100.0 5.3
_PCT T

P
GROUP TOTAL
100.0 2.1

SUM

4.950168E 07
4.389426E 07
6.5515644E 07
6.340354E 07

TAIO} = 0.038

SUM
L.846T00E 08
SUM
5.125400€ 0T
suM
2.981147E 07
4.913746E OT

8,07R443E 07
1.459888E 08

TaL0) = Q9.071

SUM

1.339954E 07
@.34T3ITCE 06
2.885440E 07
3.263403E 07

= 0.129, ETA(Q) = 0.129

PCT  PCT
GROUP TOTAL
12,7 2.8
i6.6 3.7
29,7 6.6
40.9 9.1
= 0.123, E
PCT  PCT
GROUP TOTAL
21.3 1.7
14,8 1.2
29.2 2.3
34.7 2.8
PCT  PCT
GROUP TOTAL
100.0 4.1
PCT  PCT

GROUP TNYAL
100.0 1.2

SUM
1.44561 8E 08
SUM
4.010819E 07
SUM

1.482040€ 08
3.8380L1E O7

= 0.005, ETA(O} = 0.005

PCT  PCT

GRAUP TATAL
80,9  A.5
19,1 2.0
PCT  pCT

GROUP TATAL
60,3 5,6
39.7 3.7,

SuM

1. 068696E 08
A.73260BE 07

= 0.061, ETA{O) = D.061

PCT PCT

L]
GRAUP TOTAL

3672.0
23%7.0

ETAINSTEP)
W

7399.0

T T

SUM

1.0356338E 08
8.387005E 07

SUM

60.7 4.5

33,3 2,9

= 0.078, ETA(D) = 3.078
PCT PCT
GROUP TNTAL

100.0 9.1

1.459888€E 09

LT
GROUP
22.3
19.7
29.5
28.5

PCT
GRAuUP
100.0

pey
GRauPp
160.0

PCT
GROUP
9.8
16.1
2644
47.8

PCT
GROUP
15.9
11.1
34,3
38.7

PCT
GRCUP
100.0

PCT
GROUP
100.0

PCT
GROYP

79.4

20.6

PCT
GROUP

558.0

45.0

PLT
GROUP
9543
L6 T

PCT
GROUP
100.0

PCT

PCT
TOTAL
8.8

PCT
TNTAL
2.4

PCT
TNTAL
9.1
243

PCT
TOTaL
6.5
5.3

PCT
TATAL
5.3
5.1

PCT
TOTAL
8.9

MEAN
9. 660T46E
1.163686E
1.265265€
1.442300E
MEAN
4.244312E
HEAN
3,029196E
MEAN
1.295588E
1.636279¢
L.504926E
1.975759€
MEAN
9.709813F
9.726711F
1.525880¢
1.450401€
MEAN
4.3372R8%
MEAN
3.939901F
MEAN

¢

2.134582E
2.347407F
MEAN
2.346204E
2.909899¢F
ME AN
2.922272E
3,52B299E
MEAN

1.975756€

03

05
04

04

04
04
U4
o4

03
03
04
04

04

04

D&
04

[+19
04

04
Q4

04

VAR [ANCE
3.659545E 07
7.425475E 07
6.186522E 07
5.214976E Q7

VAR TANCE
3,295327E 08

VAR [ANCE
2.577897€ 08

VAR TANCE
4,735947E 07
6.729133¢ 07
5.267962E 07
9.629045¢ OT

VAR 1 ANCE
4,4Q0RA69E OT
1.8208108 07
7.3088B0E 07
2.282747E 07

VAR TANCE
3.508504E 08

YAR [ANCE
2.2753388 OB

VAP [ANCE

1.530113% 08

T.6T7040E O7

VAR [ANCE
1.155645F OR
1.204836€ 08

VAR TANCE
1.611110F 08
1.451202E 08

VAR TANCE

9.629045F 07

SLOPE

SLOPE

SLOPE

SLOPE

SLOPE

SLOPE

SLOPE

SLOPE

sLnef

SLOPE

SLOPE

0LT



GROUP
Ta%

GROUP
20%

GROUP
23

GRAOUP
22%

VARTANCE
5.639320E Q7
5.855110€ 07

VAR TANCE
4.735947E 07
6.T729176E 07
5.267962F 07

VAR TANCE
3.220803E 08

VAR TANCE

3.236129E 08

SLOPE

SLDPE

sLarr

SLQPE

TLT



SECOND STAGE OF BQVNTR45 MDRGAN
20RA OBSERVATINNS READ AFTER GLOBAL FLLTER
¥ AVFERAGE = ~1.306527E-C1

STANDARD DEVIATION = 9.9146728 €3
POUNDARIES = -4.957349E Q04 4.957323E 04

1. 10 = 53269, Y = 5.374900F 04
2. In = 55242, Y = 5,524200f 04
3. 1D = 531269, Y = 5.324900F 04

2098 CASES INCLUDED IN THE ANALYSIS
@ FILTEREN [LOCAL/SURSET SELECTOR!
0 MISSING D&aThA CASES
3 QUTLIERS INCLUDED
0 INVALLID PREDICTOR VALUES

2088 SAMPLE NBSERVATIONS — WITH TOTALS

WEIGHTS = B.15TS00E J4
DEPENDENT VARTABLE (¥) = -1,065800D Q4 AVERAGE = -1,306527E-0]
Y-SQUARED = 3.01502aD 12 VARLANCE = 9.830075F 07

STAGE 2 DF THE ANALYSIS
REST SPLIT BASEN ON MEANS
0~STEP LODKAHEAN WITH 1 FORCED SPLITS

SPLITTING CRITERTA - .
HAX TMIM NUMSER OF SPLITS = 25
MINTMUM # O8SERVATIANS IN A GROUP = 3
2AGE OF TOTAL SS N SPLITS MUST EXPLAIN = 0.6(N=1).
PRINT CASES ODUTSIDE 5.0 STANDARD DEVIATIONS OF PARFENT GROUP MEAN

R RANKED PREDICTORS SPECIFIED
PRENDICTOR RANK PREFERENCE  UP ]
SPLIT ATTEMPT RANGE - 2 RANKS UP," 2 RANKS DOWN
ELIGIRILITY RANGE - 2 RANKS UP, 2 RANKS DOWN
PREQICTOR VARTABLE NUMBER  TYPE  MAX CLASS RANK
1 “WIGHT MOVE 26:79 V1276 M 5 2
2 HOW LONG L1VD HERE V2004 M 5 2
3 ENUCATION NF HEAD 31:43 V1485 M 9 1
4 RACE 21:48 V1490 F 3 1
5 PUB TRANSP GNOD 26:52 V1250 M 5 1
& % CHANGE IN INCOME vzoo3 M 5 1
7 EXPECT CHILDREN ? 29:18 V1370 M 1 1
fa HRS HEAD TRVL WK22:3(0-32 V1146 L} & 3
WETGKTEN ¥ VARTARLE 2005 AID3 Y-VARIARLE SCALED BY 1.0E €O
1 CANDIDATES - GRNUP SS

1 8.015038E 12

ATTEMPT SPLIT ON GROUP 1 WITH S§ = 8.015038F 12

The second run on the resdiduals
generated in the §iwst nun.

Note thnee rank lfevels, using the Last
predicton only ab a Last aesort.

Summany af the nesdidual vanicbles.

Ran%e narking UP: use Low aank
numbers firnst.

LT



LOOKAHEAD TENTATIVE PARTITION

SPLIT ATTEMPT fIN GROUP 1 WITH N = 2088, S5 = A.015G38F 12 Dedails of the trace onby given fox
S0UrS— W = B.157500F 04, Y =~1,.065RD0F 04, Y50 = R,015038% 12, X = eligible splits.

PREDICTOR  EDUCATINN OF HEAD 31:43
10 NNN-EMPTY CLASSES 6 1 2 3 &4 5 & T 8 9§
PARTITION N HEIGHT Y-MEAN Y-VAR[ANCE X=-MEAN X~-VARIANCE SLOPE ASS

BETWEEN 1 183 5.23200F 03 -4.20937€ 03 3,95312E 07 0.0 0.0 c.o

ANG 2 1905 T.62430F 04 2.64239€ 02 1.01103F 08 0.0 ¢.0 0,0 1.01077F 11
BETWFFN 2 442 2.18100€ G4 -2.87333E 43 5,91161F 07 0.7 0.0 0.0

AN 3 1446 5.97650F 04 1.04839E 03 1.085333E 08 0.0 0.0 0.0 2.45753E 11
BFTWEEN 3 1906 3.4294QF Q4 -2.75760E 03 6.942T71E 07 0.0 0.0 0.0

AND 4 1082 4.72810F 04 1.63726E 03 1.12939E 08 0.0 0.0 0.0 3.01530E 11
BETWEEN 4 1368 4.94910E 04 -1.528Q3E 03 7.76312E Q7 0.0 0.0 4.0

AND 5 720 3.20840€ 04 2.35673E 03 l.21165E 08 0.0 0.0 G.0 2.9375%€ 11
RETWEEN S 1577 %.8227CE 04 -1.27708E 03 7.95989FE 07 0.0 0.0 0.0

AND & 511 2.33480E ¢4 3,186442E 03 1.30950E 08 Q.0 2.9 8.0 3.31725E 11
BETWEEN 6 1A819 6.91500F 04 -G.40164E 02 B,18338E 07 0.0 0.0 0.0

AN 7 269 1.24250F 04 5.23152F 03 1.58187¢€ 08 0.0 0.0 2.0 4.01180E 11
BETWEEN T 1941 7.57810E 04 -3,13565E 02 9.24491E Q7 0.0 0.0 0.0

AND 8 107 4.A814008 03 4.99769E 03 1.66243E 08 0.0 0.0 G.0 1.27786E 11

BEST SPLIT ON PREDICTOR 148% = 4.011BC0E Il AFTER CLASS &

PREDICTOR. RACE 31:48
3 NON-EMPTY CLASSES 2 1 3

PARTITION N WEIGHT Y-MEAN Y-VARTANCE X~-FEAN X-VARIANCE SLOPE BSS
BETWEEN 2 406 5.49300F 03 -4,67TAGTE 03 4,.04610FE 07 Q.0 0.0 0.0

AND 1 1682 7.60B20F 04 32.37674E 02 1.G0799E 08 0.0 0.0 0.0 1.28932F 11

BEST SPLIT 0N PREDICTOR 1490 = 1,289322F 11 AFTER CLASS 2

PRFOICTOR PUB TRANSP GOOD 26:52
3 NON-EMPTY CLASSES 1 3 8

PARTITION N WEIGHT Y-MEAN Y-VARIANCE X=MEAN X-VARIANCE SLNPE ASS

BEST SPLIT ON PREDICTOR 1250 = 1.294188F 10 AFTER CLASS 3

PREDICTOR % CHANGE IN INCOME
5 NDON-EMPTY CLASSES 1 2 3 4 5

PARTITION N WEIGHT Y-MEAN Y-VARIANCE X-KEAN X-VARIANCE SLOPE Bss
BEST SPLIT ON PREDICTOR 2003 = 2.235174F 09 AFTER CLASS 4

PREDICTOR EXPECT CHILDREN ? 29:18
2 NON-EMPTY CLASSES o1
PARTITION N WEIGHT Y-MEAN Y-VARIANCE X-MEAN X-VARIANCE SLOPE BSS
BEST SPLIT ON PREDICYOR 1370 = B.701179E 08 AFTER CLASS ©

PREDICTOR M IGHT MOVE 26179
2 NON-EMPTY CLASSES 1 5§
PARTITION N WEIGHT ¥=MEAN Y-VARIANCE _ X-VEAN X-VARIANCE SLNPE BSS
BEST SPLIT ON PREDICTOR 1276 = 4.164543E 09 AFTER CLASS 1

PREDICTOR HOW LONG LIVD HERE
5 NON-EMPTY CLASSES 1 2 3 & 5

PARTITTON N WEIGHT Y-MEAN Y-VARIANCE X-VEAN X-VARIANCE SLOPE Bss
BETWEEN 4 838 3.13780F 04 1.35179€ 03 1.07215€ 08 0.0 0.0 0.0
AND 5 1250 5.01970F 0% TB.45209E 02 9.09477E 07 0.0 0.0 0.0 9.31974E 10

BEST SPLIT ON PREDICTOR 2004 = 9.319737E 10 AFTER CLASS &

PREDICTOR HRS HEAD TRVL WK2Z2:3(-32
& NON-EMPTY CLASSES 01 2 3 4 5
PARTITION N HWEIGHT Y-MEAN Y-VARIANCE X-MEAN X-VARI[ANCE SLOPE BSS

ELT



RETWEEN 4 1839 7.2834CE 04 -3.11383F 02 S5.23B40E 07 0,0 0.0

0.0
AND 5 249 8,74100F 03 2.59336E 02 1.406126 08 0.0 0.0 0.0 6.58498E 10
ALST SPLIT (W PRENICTOR 11¢& = 6.584982F 10 AFTER CLASS 4
FNDUCATICN NF HEAD  31:43 YIELDS MAXIMUM BSS = 4.011BOGE 11

D-STEP LOCK&HEAN T SPLIT GROLP 1, T0TaL ASS = &,311800F 1t
1. SPLIT GRPYP 1 ON PRENTCTOR 14BS, ASS = 4.011800F 11
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. *sewx PARTITION
FROM ELIGIRLE PREDICTORS ARGUND

MAXTMUM ELIGIBLE B85S AT €
1.5PLIT 1 ON V1485 RBSS= &
PE(1)= 4.809F 10, TOTAL= 4.

PREDICTOR 1485 HAS RANK
SPLIT GROUP 1 ON EDUCATION OF

EXTREME CASES LYING OUTSIDE THE
Y L]

wY
53249 44,0 2.3425¢4F
55242 24.0 1.22581F
53249 4.0 2.55595F

GROUP 2 WITH 1819 OBSERV
We 6,91500E Qo Y=
GROUP 1 WITH 269 GBSERY
W= 1.24250FE 04 Y=

2 CANDIDATES -

ATTEMPT SPLIT ON

GF GROUP = 1 #ss=x R
THE CURRENT RANK 1, 2 UP AND 2 DOWN

ACH STEP MAXTMUM TOTAL BSS (LODKAHEAD)
01180E 11 SPLIT 1 ON V1485 855 = 4.01180€ 11
01180F 11 TOTAL= 4.01180F 11

1
HEAD 31:43 V1485

INTERVAL (-4,957349E 04, 4.957323E 04)

V2005
06 53249
06 55242
66 83249

ATIONS FROM 7 CLASSES = 0 1 2 3 &4 5 &
-6.50124D 07 YSQ= 5.71682N0 12 X=

ATIONS FROM 3 CLASSES = 7 B 9

6.500170 07 YS0= 2.29822D 12 X=

GROUP b33
2 5,655655E 12
3 1.958161E 12

GROUP 2 wWITH 55 = 5,455695E 12

Omit the taace of splid
atiempts on the hemaining
gAouUps .

SLT



*ekee PARTITION QF GROUP & hkkik
FROM ELIGTRLE PRECICTNRS ARQUNND THE CURRENT RANK 1, 2 UP ANR 2 DOWN

MAXIMUM ELIGIBLE RSS AT FACH STEP MAXIMUM TOTAL RSS (LOQKAHEAD)

GROUP 6 COULD NOT BRE SPLIT
FND OF STAGE 2 OF THE ANALYSIS. 8 FINAL GROUPS. 8 INELIGIBLE FOR SPLITTING.
VARIATIDN EXPLAINED (BSSIQ}/TSS) = 11.6%

1-WAY ANALYSIS OF VARIANCE OM FINAL GROUPS

SNURCE SUM OF SQUARES DF MEAN SQUARE
RETWEEN 9.,322081¢€ 11 A 1.165260F 11
EPROR T.I22R30E 12 81524, 8.687616E 07
TATAL 8.015038E 12 R153¢. 9.A30075F G7

911

Sumary of variarce
taplained. Mean squares
land F- oa t-tests] arne
inappropriate here
because of weighted data.

1
1.023693 x 10°° o 0
£.054064 x 10




e ———

GROUP SUMMARY TARLE
L5 GROUPS OF WHICH B ARE FINAL

GRIUP 1 + N = 2088, SUM ¥ =. 8.157500[ 04
Y MEAN=-1.306%27E-01, VARTANGE= 9.B3007S5E 07,  SS(L}/TSS= 1.000, RSS/TSS= 0.050 y . .

SPLIT ON EDUCATIAN NF HEAD 31:43, BSSIL) = .011R00E 11 INTD This summanizes the split recond

in encugh detadil fen making the

? WITH CLASSES 0 1 2 3 4 5 &

3 WITH CLASSES 7 g o diagram pareceding the examples.

LROUP 2 . KN = 1819, SUM W = &4.915000E 04
Y MEANS-3.401646F 02, VARIANCFE= R.1833R2F 07, SSULY/TSS= 0.706s BSS/TSS= 0.01S
SPLIT ON EDUCATICN OF HEAD 31143, BSSIL) = L[,1905A3E 11 [INTR

4 WITH CLASSES 0 1 2
5 WITH CLASSES 3 4 5 &

GROUP 5 4 N = 1177, SUM W = 4.734000F 04
Y MEANS-4,953375E 01, VARIANCE= 8,9RIRCOF CT. SS{L)/TS55= 0.530, B55/785= 0.008
SPLIT ON PACE q1:48, RSSIL) = $£.239313F 10 INTD

6 WITH CLASSES 2
7 WITH CLASSES 1 3

GROUP T+ N = 982, SUM W = 4.474100E Q4
¥ MEAN= 2.271&3&4E 02, VARIANCE= 9.112443E 0T, SS(LI/FSS= 0.508, BSS/7TSS= 0.011
SPLIT ON HRS KFAN TRVL WK22:30-32, RSSI{L) = <.13959BE 10 [INTO

B WITH CLASSES 1 2 3 & 5
9 WITH CLASSES g

GROUP 8 + N = T76, SUM W = 3.5506C0E 04
Y MEAN=-5,01754%9E ‘02, VARIANCE= R.2857GBE 07, SS(L)/TSS= 0.367+ RSS/TS5S= 0.014
SPLIT ON HRS FEAD TRAVL WK22:30-32, BSS(L} = 1.136891E 11 INTQ

10 WITH CLASSES 1 2 3 4
11 WI1TH CLASSES 5

GROQUP  10%: N = 66T, SUM W = 3,021100€ Qs
Y MEAN=-1.250889E 03, VARIANCE= 7.198024% 07, SSILI/TSS= 0.271s BSS/TSS= 0.0
GROUVF 3 4 N = 268, SUM W = 1.242500F 04
Y MEAN= 5.231527F 03, VARIANCE= 1,581R66E 08, $SU{LI/TSS= 0244, BSS/TSS= 0.007
SPLIT ON HRS HEAD TRYL WKZ2:30-32, BSS{L) = 5.655285E 10 [INTO

12 WITH CLASSES 1 2 3 & S
13 WITH CLASSES a

GROUP 12 4 N = 219, SUY W = 1.025800F 0%
¥ MEAN= 4,250957E 03, VARTANCE= 1.395635E (8, SS{L}/TSS= 0.178, BSS/T55= 0.011
SPLIT ON HOW LONG LIVD HERE » BSS{LY = 8.793706E 10 INTO

14 WITH C.LASSES 5
15 WITH CLASSES T 2 3 4

GRAYP 4y N = 642, SUM W = 2.1B1000E 04
Y MEAN=-2.873336E G3, VARIANCE= 5.911613E 07, SS{LY/TSS= 0.161, BSS/TSS= 0.0

GROUP 9me N = 206, SUM W = 9,23%0C0E 03
Y MEAN= 3.029&53F 03, VARIANCE= 1.135218E OR, SS(LI/TSS= 0.130+ BSS/TSS= 0.0

GROUP  15%, N = 117, SUM W = 5.487000E 03
Y MEAN= &.,961141E 03, VARIANCE= 1.454259E (8, S§S{L)/TSS= 0.099, BSS/TSS= 0.0

GROUP  11%, N = 109, SUM W = 5,295000E @3
Y MEAN= 3,7726R6E C3, VARIANCE= 1.244024F (8, SS(LI/TSS= 0.081, ASS/TSS= 0.0

LLT

GROUP  14%, N = 102, SUM W = 4771000 03


file:///econd
http://pAe.ce.ding

Y MEAN= 1,111043E 03, VARIANCE= 1,155R24E 08,

GRAUP 13w, N = S0, SUM KW = 2,167000€ 03
Y MEAN= 9.RT3I27T3E C3, VARIANCE= 2,243774E 08,

HROUP b%, N = 195, SUM w = 2.,599000F 03
Y MEAN=-4.812793F 03, VARIANCE= 4.4]12045F 07,

SS{L)/158x>

SS(LY/VUSS=

SS{L)/TSS=

D.06R,

0.059,

0.014,

BRSS/7T15S5=

B55/75S=

RSS/T158=

0.0

0.0

0.0

8LT



100*BSS/TSS TABLE FOR O-~STEP LOGK-AHEAD
15 GROUPS, 8 PREDICTORS
< INDICATES LESS THAN 1 SPLITS WERE MADE

PRENICTAR GROUP NUWRER {* INDICATES THE GROUP -IS FINAL)

3 5 7 8 10% 3 12 ar 9% 15%  11*¥  14% 13k o
1485 Qf@ 0,3 0.1 0.3 0,2 0,2 0.1 0.2 0.1 0.0 0.1 0.1 0.2 0.1
1490 T.r 1.1 @ 0.1 0.1 0.0 0.1 0.0 0.2 0.0 0.1 0.3 0.0 0.§ ®kcs
1250 0.2 0.1 0.1 ©.C 0,0 0.0 0.3 0.1 0.0 0.0 0.3 0.0 0.1 0.4 0.0
2002 0.0 6.1 0.2 0.2 0,2 0.1 0.5 0.5 0,0 0.1 0.2 0.3 0.4 0.2 0.I
1370 ¢.0 0.0 0.6 0G0 0,0 0.0 0,1 0.0 0.0 0.0 0.0 0,3 0,2 0,3 0.0
1276 01 0.0 9,6 0.0 0.0 0.1 0.1 0,0 0.6 0.0 ©.1 0,0 0.0 0.0 0.0
2004 1.2 0.4 Q.4 0.5 0.2 0,5 {if;) 0.0 0.l 0.0 0.6 ¥*xkek 0,3 0.0
L1468 0.A 0.6 &% <D o o.0 @ a. D.3 ®skwk 0.5 ®Ekxx (.0 TeE¥E 0,0

D split made 0f this group, sce ghoup summary table immediately preceding.
Note gasup 5 splits on an inferion predictfon because it had a
Lowen nank numben, The rows of this tabfe will be ondered by rank
whateves the otder of the predicton cands,

@ No 4plit on this predicton here because of

infenior nank.

6LT
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A PRFNICTORS

100*R5S/TSS TARLE FOR O-STEP LONK-AHEAD
15 GROUPS,

MAXIMUM BSS REGARPOLFSS OF ELIGIRILITY

oH*

10* 3 12 “¥ 9% 15% 1l

GROUP NUMBER {(* INDICATES THE GROUP IS FIMNAL!}

f

?
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-

I3

*

S NG <

+ e e 8 r e .

[~

BEEFFE

a
1
3
2
aQ
1
a
5

~—O0OoO~COQ~s
T

0000000”
»
-
NMNOOO—OM

cooooeoR

—~O =W O QM
c v e s w e e

cCOoO0ODOoOC A0

BNt PRI U
b s s o w s 8'a .

[aE=RoNoRaleiaRs)

MOO=-O—~MNO
]

[=R=RoN-}~N=N- N5

A QN0 DN
R R

Q0000 ~

O NO QT
P s e som & oae

CODOOO0 -

MW SO NN
“ e s s 4 8 a &

DOoOO0OQO OO0~

Wt D0 O
" e s ey e e m

—~-—_—oo0Ccoo

cCovNDO~No
“ e v s e v

r~oo0Q™o0o

NQOMOOE o
OGN O KO
SN ND
o O N




CLASS
0

1

2

CLASS
3

4

]

CLASS

N
YMEAN
N
YMEAN
N
YME AN
N

YMEAN
]
YMEAN
N
YME aN
N
YMEAN
N
YHE AN
L]
YMEAN
N

YMEAN

N
YHEAN

N
YMEAN
N
YMEAN

N
YMEAN
N

YMY AN
N
YMEAN
N
YMEAN

YHME AN

N
YME AN
N
YMEAN

~4.791E

6,962
4
6. 107€

1628
3.0164F
A0F
-4, 679F

1.804€

03
a3
03
03
02
02
02
03
03

42

03
03

03

02
03

03

PROFTLE OF CLASS MEANS AND SLGPES

EDUCATION NF HEAD

2

68
—4.732F 03

115
~-3.888F 03

459
-2.441F 03

364
-1.182€ 03

362
1.183E €2

l.4486E 02

B.558F 02
0

5
0
2.0
0
0.0
0
0.0
364
-1.182F
352
1.1R3F

3143,

.
0

0.0
0

0.0
0

0.0
259
-6.607
317
2.269
184
2.915
222
1.130
a

0.0

ETA = 0.072
GROUP
8
.o
0.0
0
0.0
0
0.0
177
-2.080€ 03
258
-4,630E 02
153
-1,548E 02
188
5.504E 02

E 02
E 02
E 02
E 03

ENDUCATION OF HEAD 31:43, ETA = 0.072
GROUP

11%
1.998E 03
3.098F €3
4.T04E C3

S.3%3E €3

RACF

2

1382
-f.526E 07

292
6.990F 03

45
t.l39€ 03

RACE

11+

14%

56
1.554F
40
1.36AE
&

—-5.756E

5
agy
1.821E
. 1e5
-&.813F
25
2-580E

3

03

03

02
a3

03

13

¢.0
35

f8.220
11

l.6t1l

4
2,778

31:68,
7
957
1.321
0.0
25
2.580
A1:48,

13

* bk
108
-&.24KF 03
45
-2.171E 0?2
25
-3.,23568 03
20
=6.7Q4E 03
o}
£ 03 0.0
[}
E 04 0.0
o
€ 03 0.0
ETA = 0,017
Ganup
]
754
E D2 -5.668F 02
o]
0.0
22
E Q3 2.514E 03
£Ta = 0.017
aaQuP
* 6%

10% 3
0 0
0.0 0.0
0 0
0.0 0.0
o 0
6.0 0.0
152 Q
-2.804€ Q3 0.0
224 0
-2.881E 02 0.0
128 0
~1.205€F 03 0.0
161 0
-2.9587€ o2 0.0
0 162
G.0 5.375F 03
0 93
0.0 5.582E 03
9 14
0.0 -4.T91E 02
La* 3
648 244
-1.251E 03 S.618E 03
[} 14
0.0 2.021E 02
19 L1
“1+267F 03 4.000E 03

127

4.6198 03

az
4,224E 03

1

4. 265 02
4+160F 03

4.000F 03

10
-9.809¢ 02

12
97

11

11

H%
68
-4, 732E 03
115
-3.888F 03
459
-2.441€ 03
0
0.0

0.0

0.0

o QO O

c.0
0.0
0.9

0.0

X
425
-2.614E 02
197
-5.169E 03
20
-1.008¢ 02

2.501E 03
3.189E 03
2.429E 03

4.511E 03

on
203
3.029E 03
0
0.0

3
3.101E 03

18T



1 N
YMEAN
2 N
YMEAN
3 N
YMEAN
rLASS
1 N
YME AN
3 N
YMEAN
5 N
YMEAN
CLASS
1 N
YMEAN
3 N
YMEAN
5 N
YMEAN
CLASS
1 N
YMEAN
Z N
YMEAN
3 N
YME&N
4 N
YMEAN
S N
YMF AN
CLASS
1 N
YMEAN
2 N
YME BN
3 N
YHE AN
4 N
YME AN
s N
YMEAN

102
7.280F
8

4,866E
T
3.226E

1

771
—4.460E

128
-6.662E

1207
2.878E

15%

37
5,202E
A

2. 607
12
R.719E

A.535E
an
B.847F

03
Qa3
03

[+ 34
az

qz

03

0z

03

al
02
0z

02

Q&

03

23

03

166
3.376E
0

g.0

3
1.702E

a3

a4

93
9.627E
3
1.780E
4

5.494E

02
03
03

PUB TRANSP GOND

2

676
-1.322€

110
-8.90LF

1049
-6.3928

PUB TRANSP GOND

11#
&5
3.038F
7

3. 392F
58
€.220F

¥ CHFANGE [N [NCQOME

2 5
304 166
-£.275F 07  7.143E 02
31469 23R
—4.060E 07  6.856F 02
272 193
-1.211F 03 -7.113%F 02
440 308
-1.186E €3 -3.022F 02
41E 262
-1.317E 03 -8.004F 02
¥ CHANGE [N INF.OME
11+ 14
15 12
g.8126 03 -2.228E 03
17 24
4.279E 03  2.455F 03
18 26
8,C76E €2 2.131F 03
31 26
2.C7CE 03 -2.515E 03
26 14
Z.668E 03 B.246F 03
FXPECT CHILRREN ?

a3
02
02

03
03

a3

5

461
-6.223F
75
—4.191¢€
651
4. 456F

14%
39
2.831F
(-]
4.721F
54
1.651F

074
Q02
02

03
02

ol4]

L &T 0
1.065E G4 0.0
3 19%
~1+829E 04 -—%.B813F
[1} 0
0.0 0.0
26:52, ET24 = 0.002
GROLP
7 8
e 272
-7.711E @1 -5.514E
-1-1 55
—&,006E 0 -1.209E
598 455
$.919E 02 -2.145F
26:52, ET2 = 0,002
GROup
13% b
i9 135
5.546E 03 -5.146F
1 9
2-D32E 03 -1.9Q7E
32 53
1.191E 04 -4.312F
+ ETA = 0.001
GROUP
7 8
140 80
1.103€ 02 8.248E
210 145
B.229E 02 1.326E
168 148
~6.123E 02 -1.117E
261 221
-l.134E 02 -1.062E
195 154
-2.57T7E 02 -9,.846F
¢ ETA = 0.001
GROUP
13% hx
9 26
1.603E 04 =-5.125E
16 28
4.612F 03 -3.403F
6 25
6.063E 03 -3.041F
& 47
1.530E 04 -3.549F
11 &7
1.321E 04 =7.086F
29:18, FTA = 0.030

03

02
a3

Qa2

03
03

03

02

. 03

03

02

03

03

;03

E 03

a3

-1.069E

10*
&5
~1.307E
148
—4.030F
130
-1,400F
192
-1.5RRE
128
-1.778E

03

03

03
0z

03

03

3

95
4.290€

18
#¢530E

158
6,289E

9.327E

¢3
02
03

03
03
03
03

03

12

T8
4.007€

17

3.702€

126
4.935E

B.4B]E

03
02
03

Hx
215
—3.107E
35
—2.047E
398
-2.158E

-2.595E

03
03
03
03

03

3.215E

2.490E

Q3

= 03

03

ek}

23
03
03

03

78T



CLASS
0 N
YMEAN
1 N
YMEAN
CLASS
0 N
YMEAN
1 N
YME AN
cLASS
1 N
YMEAN
5 N
YMEAN
CLASS
1N
YMEAN
S N
YMEAN
CLASS
N
YMEAN
2 N
YHE &N
3 N
YMEAN
4 N,
YME AN
5 N
YMEAN
CLASS
1 N
YMEAN
2 N
YME AN
3 N
YMEAN
4 N

YMEAN

1949
-2.941E

139
3.641F

6.271E

1

291
5.331E

1797
—-9.587E

17%
2.661E
148
2.635F
186
9.508E
329
1.485E
1250
-8.452E

T.091€

a1
02

a3

n3

02

01

03

03

a3
02
o2
03
a2

03
a3
03

03

GROUP
2 5 7 8
1713 1072 BO6 597
—S.532F 02 6.302E 00 2.T725E 02 =4.BLSF
1c6 oA T 19
—7.540F Q7 =5.RN9E 02 =2.22TE 02 ~-6.T4HE

EXPECT CHILNREN ? 29:18, ETA = 0.000

GROUP
11% 1ax% 13+ Ah*
101 9R 45 183
3.228E C3 1.468E 03 1.102F 04 -4.660F
8 4 S 12
1«0B1F ¢4 -8.035F 03 -7.660F 02 -6.177C
MIGHT MOVE 26379+ ETA = 0.001
GROUP
2 -] T 8
233 177 158 128
-4.320F 02 -1.662F 02 -1.494E 01 -9.853E
158¢ 1000 R24 848
~1.023F €3 <=2.T47E 01  2.741F 02 -4.050F
HIGHT MOVE 26:79, ETA = 0.001
GROUP
11* 14% 13* 6%
Z1 2t a 10
4.B22E €3 1.853F 03 7.162E 03 =4.312E
a8 Al 42 176
21,5256 03 9.111E 02 1.038E 04 -4.BTOE
HOw LONG LIVD HERE + ETA = 0,014
GROUP
2 5 7 &
146 114 77 68
1.179E @3 1.667E 03 2.106E 03 1.88RF
124 96 80 69
-1,394F G3 -9.899F 02 -5.996F 02 -A.092E
155 114 91 19
-7.520F 02 =1.193E 82 2.728E 02  9.093f
271 199 171 149
2.349E (2 1.500F 03  2.055E 03  1.136E
1117 654 563 411
-1.433F €3 -5.9956F 02 -4,496E 02 -1.521F
HOW LONG LI VD HERE « ETA = 0,014
GROUP
11* 14% 13« b*
11 0 3 37
t.048E 03 0.0 2.334E 04 ~-3.801E
L8 0 3 16
1,477 €3 0.0 5.2B0F 03 =7.504F
13 4 4 23
6.841F 03 0.0 1.035E 04 -4.489E
25 o] 9 28
2.417E 03 0.0 2.249E 03 -T7.545E

02

03

03

02
0z

0%

03

03
02
o1
03

03

03

> 03

03

03

10=%
594
-1.160F
11
—1.976E

10%
107
-2.182F
860
-1.070F

-1.B67E

03

03

03

03

3

236
5.456F

33
3.647E

3

58
3.945E

211
5.995F

03

03

03

03

03
03
03
03

03

12 &%
181 634
4.237¢ 93 -2.R55E 03
28 A
4.367E 03 =-5.111E 03
12 . LY ]
50 Sh
3.485F 03 -1.362E 02
169 546
L. 488 03 -3,039t 02
12 4%

26 32
6.486E 03 -1.BAlE 03
21 28
T.546E 03 —3,350e 03
27 41
6.789E 03 -3.60BE (3
43 78
T.081f 03 -3.251E 03

102 463

L+111E 03 ~-2.783E O3

9%
129
2.977E 03
7

4.463C 03

2,819 03

3.840F 03
6.921E 02
1.571E 03
8.630F 03

2.505€ 03

£81



5 N
YME AN
FLASS
o N
YWFEAY
1 #
YHE AN
PR
Y FEAR
TN
YHE AN
4 N
YHEAN
BN
YMEAN
L &85
0o
YMEAN
T [
YMEAN
2 M
Y#EAN
RN
yMEAR
L
YML AN
& N
YHTAN

0.0

1

517
1.004F
“p7
—-7.502¢
286
=1.5677F
240
~e. 705k
e
—T.h1?F
749
25030

29
AL 1T2F
P4
2.€05¢C
16
5.710F
s
f.0489F
13
1.291F

03
nz
n2
37

o4

¢
03
2%

s

PN AE ANALYSTS

57
&.G1EF C2

HRS HEAD TRVL WK22:

2
527
7.055F €2
364
-1.771F €3
245
~2.1R4F (3
21
-1.775E €3
266
-2.187F 07
2té
1.4428 07

HF S HEAD TFVL WK22:

1%

Cal)
.0
0.0

1€
2.772F O3

RREE

102
1.111F

5
232
2.T1&F
245
-1.432¢
17T
-1.575E
154
~1.053r
T 204
—1.73E
146
2, 135F

5,647TE

03

03
03

03

03
0z
0
03

02

31 91
1.135€ 04 -3.632F
30-32, ETA = 0.017
GROUP
7 R
206 0
3.0%0E 03 0.0

234 234
-1.223E 03 -1.223F
150 150
~1.489E 03 -1,489F
126 126
—7.397E 02 ~7.397F
157 157
~1.469E 03 -1.469F
109 109
3.,772F 03 F.772E

30-37, FTA = 0.C17

GRIUP
13% 6%
50 27
9.973E 03 -3.6450
Q 3
0.0 -5.129E
Q 27
0.0 =2.065F
o} 2R
0.0 -6.0R5F
¢ &7
0.0 ~6.781F
o 35
0.0 -4.335E

03

03
3
02
03

03

03

a3

03

03

10=
0
0.0
234
-1.223F
150
-1.489F
126
~T.3%97E
157
~1.469E
0
0.0

02
03
02

03

7.8B1E

iz
0
03 0.0

68

03 3.6788 03 -3
41

= 03 1.345E 03 -4
29

03 3.8T6E 03 -4
48

a3 5.32208 03 -3
33

03 7.881F 03

=5.325E

03
03
03
03
03

a3

The ETA {nedfly n %) is the gnaction of the variance :of group | aceounted for by
alf the subdlass ‘medns of Lthat prediclon.

[The ESS 4 mhe fox binany &

onty)

78T



APFENDIX 5 - Second Example, Run 3

INSTITUTE FOR SOCIAL RESEARCH MONITOR SYSTEHM 02/05/73
LAl t] FASTER VERSIONS OF TABLFES, MDC, AND REGRESSN NOW AVAJLABLE AY SPECIFYING FRAok
TEEE R i LI 2222
ok /7 EXEL OSIRTIS,LIB=X485321%,LIB1=0SIRPGM bbb dd
TRRER khkkk
ek SAVINGS ARE 10-45% FOR TABLES, 45% FOR 40OC AND 20% FDR REGRESSN AT

*sxkxt IME 15 0:22:45
#xexe [STING NF SET-UP FOLLOWS:

CARD

Host of this is identical
2o the finst aun so0 enly
alterations are noted.

1 2 3 L3 5 & 7 R
123456789012345567890123456789012345678901234567890123456789012345678901224567890
$RUN AID3

INCLUDE V126471 AND ¥1109=0-1 AND ¥542=0-1 AND ¥1499=1-9%
MTR 46+ PROJECT 468Q70,4103
»

V103 .V5427V6035VI009 T VITOS  VIT22,V1146.,V1168,V1240,V1250,V1274,V1276,V1365,
Y1370,V1490,V1498,V1499,V1506,VI572:V1609,V1T19,V1720,V1264,V]1485

HOUSE VALUE TRUNCATED TO 5000-75000 BY SOQUEEZING EXTREME CASES B807MTR45 MDRCGAN

YVAR=1122, WEIGHT21609, XVAK=1719, ANAL=REGR, RECONE, HUOP:NONE.} Specify subgroup regressions
TABLES=(CLIGMEANI* {of house value on {ncome)

1 1FV1264 NE 1 irstead of means. The
RV1109  GT 1 covariate [x] must be
DRV 542 GT 1 Petete specigied.
ORV1499 EQ o * Vi26s = 0

2 (FV1719 LT 1000 V2001 = 1
DR IN 3000 49cg ?

5000 7499 3
7500 9999 4
10000 14999 5
15000 19999 6
GE 20000 7
3 IFV1365  EQ 1 V2002 = 1 YARRED
6aTo 4
JFV1240  EO 1 vz062 = 2 SKGL MAN
ALT v2oaz = . 3 SNGL SMN
4 T V1720 MPY 100v1120
V2003 NIVV1T20 viT19
TFV2003 LT -5 V2033 = 1 BRACKFT
ne ™ -4 4 2 PERCENT
5 @ 3 CHANGE
10 19 4 i1
GE 20 5 INCHIME
5 IFVi274 EQ 1 v2004 * 1
cuTQ 6 HOW
1FV 603  FO 1 V2004 = 2 LARG
6070 6 LIVED
TFv 101 IN 7 av20J4 = 3 HERE
GaTn &
IFy 101 IN 4 Y2004 3 4
ALT V2004 = 5
L] IFvlleR IN T QV1]1AR = [ TRUNCATY
7 TFV1009 EQ ] V1009 = 2 MINE

1 2 3 4 & 7 )
12345678301224567R90123456T8G0) 23456 78901234567890123456787012345678301234567830

98T



caan 1 2 3 4 5 & 7 8
N 12345678901234567A9012345678901234567890123456T8901234567890123456T6901234567890
42 8 [FY1009 6T [ v1009 = [ CODES

43 o  IFVI2TO  NE 1 V1370 - - Q

44 10 I1FV1490 nut 1 291490 = 3

45 11 IFV1Z50 nuT 1 Iy1250 = 5

46 12 1FVI122 6T 75000 vilzz = 75000

.7 nrRV1122 LT 5000 V1122 - 50007

48 13 IFVIT19  GT 25000 v1iTL9 = 25000

49 14 IFV1276 6T 5 Y1276 = 5

50 15 1FV1la6  IN 1 99¥1146 = 1 BRACKET

51 IR 100 149 H ANNUAL

57 150 199 3 HOWR S

52 200 299 - COMMUTNG
s6 GE 300 5

€5 END

L1 PREN=2001 MAXC=7 RANK=(Q PREN=!'3-YR 4VE ¢t TNC'=*=

a7 PRED={1168,1009) HAXC=6%

Sf PREN=2002 MAY(C=3 PRENx'SEX & MAR STATUS'#%

59 PREN=1506=

60 PREN=1498 MAXC=5®

al PREN=15T2 MAXC=4 F%

563 PREA=]1430 MAXC=3 F RANK=0 ENDs= . .

A3 MIN=3 RENII=.5 RANK=ALL TRACE=ALL® | Omit fookahead and symmetry premiums

and use a Lowen reducibifity enifenion
because the main income effeet {s

already aemoved.
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VAR, TYPE VORIABLE NAME TLOC  WIDTH WNMGREC  RESP. VOCABEL  MDRNDEZ
T 101 0 WHEN MOVED IN 5:36 270 1 o 1 0goo0u9
Y 542 s} CHANGE [N FU CNMP 15:25 1070 1 c 1
i 603 b] MOYED SINCE SPRNGHBL6-3R 1149 1 [} 1 ¢ououa9
T 1009 o] BKT AGE HEAD ov1poo 1811 1 0 1
T 1109 1] CHANGE IN FU COMP 21:1R 2021 | n 1
To1122 s} HOUSE VALUE 21:38-42 2041 5 4 1
T 1146 3} HRS HEAD TRVL wK22:30-32 2103 3 bl 1
T 1168 o B REQUIRED ROCMS 23:12 2154 1 [} 1
T 1240 0 SEX QF HEAD 26:40 2351 ! a 1
T 1250 0 PUS TRANSP GRND 26352 2363 ] [} 1 aonn009
T 1264 o 0WN DR RENT? 26767 2378 1 a 1
T 1274 a MOVEN SINCE SPRING 26:77 23R8 1 [ L QeUIC09
T 1276 [+} MIGHT MDVE 26:79  23%0 1 a 1 0000009
T 1365 0 MAR{TAL STATUS 29:10 2514 3 c 1
T 1370 Q CXPECT CHILDREN ? 29:1f€ 2521 b a 1 0000U0R
T 1485 o ENUCATION OF HEAD 31:43 2857 ! el )3 aoeuLuo9
) 1450 0 RACE 31:48 2662 1 0 1 0000009
T 1498 0 DIST TO CNTR SMSA  31:58  2H72 1 o 1 oU0V0 09
T 149% 3] TYPE DF STRUCTURE 31:5¢ 2673 1 g 1 QQo000?
T 1506 0 LRGST PLAC/SKSA PSU31 66 2680 1 0 1
T 1572 0 CURRENT REGION OV&T2 283R 1 0 1 0000009
T 1609 0 WE[GHT ovsas 2892 F a 1
T 1719 0 FEAN MONEY INCOME 3179 5 ] 1
T 1720 9 SLOPE MONFY INCDME 3184 [ 0 1

HOUSE VALUE TRUNCATED TO 5000-75000 RY SQUEEZING EXTRENE CASES 8Q7MTR45 MORGAN
YVAR=1122, WEIGHT=1609, XVARx1719, ANAL=REGR, RECODE, MDOP=NONE,
TABLES=(ELIG.MEAN)®

N0 LNG TEST REL A OPERAND B OPERAND RES 0P C OPERAND 0O OFERAND TEXT
1 1FV1264 NF 1 0 0 0 1]

REFND in

GOR
car

CNR

TSEQND
006D00
vCLLD
o0UVCY
00979
00929
0CuUd
60000
0CHUY
Voouo
00000
00000
06300
00200
06000
00000
00309
oooo
00000
00000
00000
00goh
00000

oQuao

ugobo’
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oRV1il0S GT 1

gevTs42 6T 1
QrRVi499  EQ 0
IFVIT19 LT 3000
or o 1IN 3000
5000
0 1500
o La00n’
0 15¢00
a GE 200400
TFV1365  EQ
0
IFV1240  EN
ALT ]
T 0
0

[FV2003 LY
ar 0 N
0
0

0 GE
[FV1274  EQ
0

TFY 502 ED
[

1FV 101 N

0
1Fv 01 1N
ALT 0

IFyltéea N
IFY1009 EQ
TFV1I009 GT
IF¥1370 NF
[Fv1490 0UT
1FV1250 oOur

-
OCNrO D000 QO0OVOO000OCO+00OWDOO000ONMROO
N

T Y ND PONO~O~DONAENOOO ~O

IFvlL22 GT 75000

Qrvilz2 LT 5000
13 IFV171% =T 25000
| 2 1Fvl1276 Gr 5
15 IFVil4a ™ 1
0 on 0 100
0 0 150
o] Q0 200
Q a GF 200
0 END ] [

0 Q
0 a
ov1izas
0v2001
4999 ]
7499
9999
14999
19999

Qoooo

0
ovzoce
i [}
ov20902
av2002
avi720
0v2003
0V2003
4 [
9 Q
19 3
[} 0
0v200+
[ 0
UV 2004
0 [
V2204
0 0
av2ooe
0v2004
IvVliles
ovigca
avigon
ov1370
2v140G
V1250
ov1122
aviizz
av1T71e9
ov1275
S9VIilas
1473
193
293
0
0

[rK=N<ErR=}

=

GNTN

HPY

nivy

=

G070

50T0

6OTn

L U I I T B R A |

'PREUjZUOI MAXC=7 RANXK=0 PFEN='3-YR AVE ¢ INC'®

PRED=(1168,1CCI) MAXM=#%

PRED=7002Z HAX({=3 PREN=tSEX £ MaR STATUSHe

PRED=]1506%

PRED=j4Ga MAX(C=5%x

PRENS|5T2 WAXC=4 F¥

PREN=1490 “AXC=3 F RAHK=(Q END¥

MIN=2 QEQU=.5 RANK=ALL TRACE=ALL*

WNDE— LR r SN -0 Q0

100V
t72av

MWwOEVINE P WEND ~ W

~
o n
20
o0
oo

250C0

C WA WN =D

172
17t

COoCOoOUCLOOLLOUDRLODODOULUOODDDLIOLODODOOCODODODDD

MARRIED

SNGL MaN
SNGL SMN

AIACKETY
PERCENT
CHANGE
IN
ENCOME

HAW

LONG

LIVED
HERE

TRUNCATE
NINE
COEES

RBRACKET
AMNUIA
HCUFS
TAMMUTNG

06T



cowmit SPECTFIFN

aurenT SPFCIFIFN

THI fOMRLFTE yARTARLE L IST [5:
et 542 A0 10CY 1108

1TIS O 1%20 12564 1485 2001

T6T



HOUSE VALUE TRUNCATED TO S00C-75CG0 BY SQUEEZING EXTREME CASES BO7MTR4S MORGAN

2088 OBSERVATIONS READ AFTER GLORAL FILTER

Y AVERAGE = 2.0CT342E o
STANDARD BEVIATION = 1.278252E D4
BOIWDARIES = -4.383920B 04 8.398600E 04

2088 CASES INCLUNED IN THE ANALYSIS
0 FILTERED (LOCAL/SURSET SELECTNRI
O MISSING DATA CASES
o DUTCTERS INCLODEN
0 INvaL{D PREDICTOR VALUES

20R9 SAMPLE ORSERVATIONS - WITH TQTALS

WEIGHTS = 8,1575Q00E Q4

DEPENNENT VARIABLE (V) = 1.637482n 09 AVERAGE = 2.007342E 04
'Y-SOUARED = 4.6192390 13 VARITANCE = L.6333831€ 08
COVARTATE (X} = A.399546D OR AVERAGE = 1.029671E 04
X-SQUAREN = ! 1.1522880 13 VARTANCE = 3.524958E 07
CROSS-PROCUCTS (Z) = 2.057341D 13 SLOPE = 1.291759E 00

STAGE 1 OF THE ANALYSIS
BEST SPLIT RAASED NN REGR'N
0-STEP LOOKAHEAD wWITH 1 FNRCED SPLITS

SPLITTENG CRITERIA -
MAX ITMUM NUMRER (OF SPLITS = 25
MINFMUM & ORSERVATICNS IN & GROQUP = 3
ZAGE OF TOTAL SS N SPLITS MUST EXPLAIN = Q.5{N=11,
PRINT CASES QUTSINE  S,0 STANDARD DEVIAYIONS OF PARENT GROUP MEAN

8 RANKED PREDICTORS SPECIFTED
PRFENICTOR RANK PREFERENCE AT
SPLIT ATTEMPT RANGE — @O RANKS UP, 0 RANKS NOWN
ELIGIRILITY PANGE - 0 RANKS UP, 0 RANKS DOWN
PREQDTCTNR VARTABLFE NUMAER TYPE MAX CLASS RANK
1 3-YR AVE $ [INC V2001 H 7 o]
2 ¥ REQUIRFD ROCMS 23:12 vilen Ll 5 1
3 BKT AGE HERD Svioce v1009 M & 1
& SEX £ MAR STaTUS v2002 M4 3 1
5 LRGST PLAC/SMEA PSU3L:66 V150A M 9 1
[ DIST TD CNTR SMSa  31:58 viaag L] 5 1
7 CURRENT REGION 0vaT2 vist2 £ 4 1
q RACE q1:4R V1490 F 3 0
WEIGHTED Y VARIARLF 1122 HOUSE VALUE 21:38-42 SCALED BY 1.0E OO
COVARIAT=-MEAN MONEY INCOME V1719- SCALE FaCTfIR 1.,0E 00
1 CANDIDATES - GRNUP S5

1 1.3322490% 13

ATTEMPT SPLIT QN GRAQUP 1 WITH 85 = 1.2332240F 13
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LOGKAHEAD TENTATIVE PARTITION

SPLIT ATTEMPT ON GROUP I WITH N = 208R, S5 = 1.332240E 13

SUMS— W = R,ISTS00F D4, ¥ = L,627439E 09, ¥YSO = &4,619232E 13, X = 4,199544F (B,

DRENICTNR  # HEDUIRED RACMS 22:312
5 NON-EMPTY CLASSES 2 3 4 5 &
PARTITIGN N WEIGHT Y-MFAN  Y-VARTANCE X=VTbN

BETWEEN 2 h51 2.91270F 04 1,762C8C 06 1.343092F GR  7.2540P7F 03
AND 3 1427 5,24380E C4  Z.14367E 04 1.74471E 08  1.15¢73F 04
SFTWEEN 3 1218 5.30230F 04 1.9242RE )& 1.51947E QR 9,2R299F 0}
AND & B70 2.85%20F 04 £.16159% 04 1.AL1204F DR  1.21793€ Q4
AETWFEN & 1704 7.11340f 04 2.G0866F 04 1.60202E 08 1.00729€ 04
AND 5 384 1.04410F €4 1.99834L 04 1.8495%0F OR  1.18147E 04
AFTWFEN 5 1929 7.7FACCE C4 7.COT79E D& 1.61590E 0% 1.02025¢F 04
AND A& 159 3,49500F 03 1.95794F D4 2,02590F 08 1.72BLRE 04

REST SPLIT NN PREDICTAR J1&™ = 1.176083E 11 AFTER CLASS 2

PREDICTNR AXT AGE HEAD 9V10CS
5 WNON-EMPTY CLASSES 2 3 & 5
PARTIT (DN N HETGHT Y-MEAN Y-Van]ANCE X~NFAN

RETWEEN 2 3T2 1.4235CF Q06 1 .G974RE 08 [,469&4QF 08 (.08257F G
. AMN 3 1716 ALT3400E 04 2.01154F 04 1.67369E OR  1.01849E 94
BETWEEN 3 902 2.,26870F Q4 2,20T43E 04 [.75047F€ 08 1.182862F Q4
AND & 11P& 4.RCRAQE €& 1.96R00E 04 1.S0677E 08 9.73166F 03
BETWEEN & 13A1 5,10150FE G4 2,18217€ 04 1.707A&E OB 1.21373F 34
aND & 707 3.05600F 04 1.7LS50C 04 1.37650F 08  7.22427E 02
RETWEFN S 1759 6.60020F C4 ?.11990FE 04 1.6R465E 08  1,16022EF N4
AND & 329 1,S57T39F 04  1.53079E 04 1.14113E 08 4,763B7E 03

REST SPLIT ON PREDICTOR 1009 = 2.2B22D5F 11 AFTER CLASS 3

PREQICTAR SEX & Ma” STFAaTUS
3 NAN-EMPTY LLASSES 12 3
PARTITINN N AEIGHT Y-MEAN  Y-VARIAMCE X-“EAN
BETWFEN 1 1660 6.66840F 04 2.10937t 04 1.7032RE OB 1.14257E 04
ANC 2 628 1.48910E 04 1.550646E 04 1.07QR3E 0B 5.24077€ Q3
BETWFEN 2 1742 6.9B820F Q4 2.07886E 04 1.687A6E 08 1.11953F Q4
AND 23 346 1.14930F D4 1.579G3E 04 1.10312E 0B 4.92633E 03
REST SPLIT DN PREDICTOR 2002 = 1.i968R7E 11 AFTER CLASS 2

PREDICTOR LRGST PLAC/SMSA PSy3ji:6é
& NNAN=-FMPTY [ ASSES 7 3 &4 5 o
PARTITION N WEIGHT Y-MEAN ¥-VARTANCE X-MEAN

BFTWEREN 1 633 2.37C10F 04 2,583CHE 04 2.11B70FE 08 1.26270€ Q¢
AN 2 1455 9,.78740FE 08 1.7715a6E 0% 1.24519E 08 9.342318€ 03
BETWEEN 2 1076 4.11590f Q4 2.40121E D4 L.89791E 08 1.21277E 04
ANN 3 1012 4.04160E 04 1.60623E 04 1.34747E Q0B 8,43205C 03
RETWFEN 3 1298 5.034R0€ 04 2.30145€ 0% 1.79150E 08 1.17%12F Do
AND 4 790 3.12270F 04 1,533I5E 04 1,D17028 08 T7.B8BTL4E 03
RETWEEN 4 1442 5.65140F 04 2.251R0F 04 1.73974E 08 1.15397F 04
AND 5 6466 2.50610F 04 1.456CRE 04 2,57874E 07 7.49371E 03
BETWEEN 5 1642 6.45450F 06 2.16425€ 06 1,69051E 08 1,11399E 04
AND 446 1.66300E J¢ 1.33443F 04 9.43&10E 07 7T.00271F 03
BEST SPLIT DN PREDICTAR 1506 = 3.50R619F 11 AFTER (4S5 2

PREDICTAR DIST TO CNTR SMSA  31:58
5 NON—EMPTY CLASSES 1 2 2 &4 5
PARTITION N WE IGHT ¥Y-MEAN Y-VARIANCE X=MEAN
BETWEEN 1 386 1.41750F D4 1,88454E 0% 1.11413E 08 1.08581F 04
AND 2 1702 6.74000F 04 2.03317E 04 1.74009E 08 1.02207E 04
BETWEEN 2 968 3.71490FE D4 2.12913E 04 1.4356BE 08 ].1552RE D4

X-Ver [aNCE

3.50509E
l.uhaTAE
2.6571 28
3.202613%
3.52720%
3.261228
3.51369F
3.329T0DE

D7
07
a7
o7
07
a7
[ik4
o7

A-VARIANCE

1.90362F
3.BAL1E6E
2.52645C
3.04427F
2+76472E
3.2AR04F
3.10754F
1.51379F

07
0
o7
07
o7
o7
0t
07

X-VARTANCE

3.24255F
1.66%594%
3.33723¢E
1.28362F

o7
o7
o7
a7

X=-VAR[ANCE

3.72024E
3.13371F
3.44958E
2.91535¢
3.437R1F
2.72810E
3.50440E
2.44100F
3.50309€
Z.29341E

07
07
a7
07
67
o7
a7
o7
o7
07

X=VARIANCE

3.,52740E
3.52307¢
3.37033E

07
o7
07

XSO = L.LSPRANE 12, 7 = 2.087340F 13

sLrer
1.DERIRE OO
1.e7169E 01
$.27265% 20
L.%08A4E 20
1.27774E 0O
1,506352 N0
1.29543E 0O
1,376425 00

SLPE
1.77756% 00
1,24434E 20
1.72314% 0OG
1.098338 QU
1.50984E 00
1.14261E N0
1.33050% 00
1.5073RE 0O

SLOPR
1.36936E 00
1.34439E 00
1.35647E 0OC
1.58826FE CO

SLUPE
1.4564TF 00
1.0937%4E Q0
1.39794E 00
9,60458E-01
1.34357F 00
9.52956E-01
1.30042€ 00
9.49607E-01
1.30%40E 00
8.53730E-01

SLNPE
1.04984E 00
1.34702E 00
1.21050€ 00

ESS
1.17609F U1
B.h3601F 10
£.A2TUTE 10

Z+A2361F 10

RS9
f.20040 10
2.2822d¢ 11
1.432276 11

1.39603E 11

w35
A.38022E 10

1.19689F 11

RSS
3.4TUV7E 1L
3.508862E 11
2,36552E 11
2.01075%E 11

1,42371F 11

RSS

A.569R0E 10
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aH0D 3 1120 4.442/0F 04 1.90551E 06 1.77832E 0B 9.24463BE 03
AFTWFEN 3 1304 5.,07440F 06 2,229¢2E 04 1.TISLTE OF 1.160R2E 04
AND & 7A4 3.08210F 04 1.64149E 04 1.28679E 08 B.13BL6E 03
RETWEEN 4 1549 6.04550F 046 2.15046E 04 1.65281F 08 1.11735E 04
AND 5 539 2,10B00E 04 1.55461F 04 1.35481E 04 T7,78065E 03
BEST SPLIT ON PREDICTOR 1458 = @.569802€ 10 AFTER CLASS 1
PREDICTAR  CURRENT REGION OV472
4 NON-EMPTY CLASSES 4 2 3 1
PARTIT(GN N WETGHT Y-MFAN Y-VARIANGE X-MEAN
RETWEEN 4 317 1.,32710F 04 2.13324F 04 1.22307E QB 1.06194F Q4
AMD 2 1771 6.83040FE 04 1.9828BF 04 1.710R6E OB 1.02340F 04
BETWFEN 2 934 4,C1CHBCE 04 2.023634€ 04 1.31437E QB 1.96382F Q4
AND 3 1156 4.14670E C4  1.67929E 06 L.94292f 08 9.95641E 03
RETWEFN 3 1724 6.3B8510E 04 1.R7222F 04 1.36095F DR 9.8A245E 03
AND 1 364 1.77240F 04 2.49414F 04 2,32022E 08 1.18611E 04
AEST SPLIT ON PRENICTAR 1572 = 3.015201F 11 AFTER CLASS 3
PREDICTOR  3-YR 4VE % INC
7 NON-EMPTY CLASSES 1 2 3 4 5 6 7
PARTITION ] WE[GHT Y-MEAN Y-YARIANCE X-FEAN
BETWEEN 1 254 A.80500F 03 1.0829AE 04 4.2337BE 07 1.92335% 03
AMD 2 1832 T.27700F 04 2.12282E 04 1.65708E 08 1.13099E 0«
AETWEEN 2 513 1.£5410F 04 1.17944E 04 5.73436E 07 2.RS686E 03
ANE 3 1575 6.50%40E 04 2.21791F U6 1.68534E 0B 1.21Q50F 04
BEFTWEEN 3  A99 2.AS780F 04 L,2776BE 04 6.00404E 07 4.33335€ 03
AND 4 1189 5,2597QF 04 2.40934F 04 1.74904FE 08 1.35822E 04
BETWEEN 4 1261 4.30130F 04 1.42346E 04 T.004%56E 07 5.79847E 03
AND 5  B27 3.,85&20F 04 2.658&2F 04 1.BT193E 0B 1.53142E 04
QETWEEN 5 1758 6.54110F 04 1.73967E 04 1.02472E 08 A.02113F 03
AND 6 330 L.6164QFE 04 2.21195€ 04 2.29491E 0B 1.95053E 04
BETWEEN 6 1966 T.55220F 04 1.85559E 04 1,18597E Q8 9.24B82F 03
AND 7 122 6.04300FE 03 3.90410F 04 2.37204E 08 2.33944E 04
BEST SPLIT ON PREDICTOR 2001 = 7,274601E 10 AFTER CLASS 3
PREDICTOR RACE 2]1:48 *
3 NON-EMPTY CLASSES 2 3 1
‘PARTITION N WEIGHT Y-MFAN Y-VARIANCE A—-MEAN
BETWEEN 2 406 5.49300FE 03 1.17B27E 04 5.526T0E OT 6.96276F 03
AND 3 1682 T.50820F 04 2.06720E 04 1.65903E 08 1.05374F 04
RETWEEN 3 462 7,2220CE 03 1.38035E 04 B.43736E 07 7.61994F 03
AND 1 1626 7.42530E 04 2,06917F 04 1.66951F 08 1,05607F 04
PLIT ON PREDICTOR 14590 = 1.164S07E 11 AFTER CLASS 2

BEST S

LRGST PLAC/SMSA PSU3L:64 YIELDS MAXIMUM RSS = 3.5084619E 11

0-STFP LOOKAHEAD TO SPLIT GRDUP 1, TOTAL RASS = 3.50861%F 11

1. SPLIT GROUP 1 ON PREDICTOR 1506+ BSS =

3.508619E 11

3.414688E
3.4182LF
2.85526%
3.43420€
2.93706F

o7
o7
97
o7
o7

X-VARIANCE

3.13668¢
3.56093¢
3.36420F
3.84160F
3.,44R96E
3.49511F

a7
a7
07
07
a7
a7

X~VARTANCE

4.23TTE
2.99512€
1.36197F
2.62059E
3.21099E
2.21234E
T.23R897E
1.87425E
1.49902E
1.14318€
2.29345€E
3.09720E

05
07
J6

X~-VARIANCE

2.546T9E
3.5102RE
2.60314E
3.53912E

o7
o7
o7
o7

1.30168E o0
1.31504E 00
1.14509€ 00
1.3144RE 00
l.11&£21E 00

SLOPE
Q. 40366F-01
1.34933% 00
1.03504F 00
1.47810E 00
1.14924E 00
1.636225 00

sLaPE
1.85793E 00
1.33507E 00
1.237845 00
1.413145 00
7.05368€-01
1.4625TE 00
9,30808E-01
1.43132¢ 00
1.17493€ 00
1.76156E 00
1.18059€ 00
2.25368E 00

SLOPE
8.87249E-01
1.28359E QO
1.07415€ 00
1.28445E Q0

3.16754E

5.79G8 8%

1¢0

i

4.09532F 10

T.05%985E
1.12055E

2.01520F

2.20117E
6.19079E
T.27460E
5.46434E
G 44 T56E

6.59840E

1. 16451F

7.27292E

BSS

10

11

11

ASS

10
10
10
10
10

10

BSS

11

10
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*xkkd PARTITION CF GROUP 1

FRCM ELIGIRLE PRENICTNRS 'ARCUNN THE CURRENT

MAXIMUM ELIGIBLF BSS AT EACH STEP

1.5P0L07

1 UN V15C& BSS= 3.5CH820 11

PEil)e 6.h61E 10, TUTAL= 3,5CR62E 11
PRFDICTOR 150& HAS RANK )

SPLIT GRTiLP
GAnup

CROUP

1 NN LRGST PLAC/SMSA PSU3) :6¢
2 WiTH 1012 THSERVATIONS FRNM

W= 4,041&0F C4 Y= A,491740 08
X§0=" 4,0R8066N 12 7= 6,50644D 12
1 WITHE 1076 GRSERVATIANS FRNM

W= 4, 115GGF 04 Y= §,883150 08
XS0= T.472210 12 7¢ 1.396900 13

? CANDIMATES - GROYP s$

rkxk
RANK 1, 0 UP AND 0 DOWN

MAXIMUM TOTAL BSS (LNOKAREAD)
SPLIT 1 CN V1506 ASS = 3.50842E 11
TOTAL= 3.50862€ 11

V1504
4 CLASSES = 3 &4 5 &
YSO= 1.465650 13 X= 3.407900 08

2 CLASSES = 1
¥50= 1,1453590 13 X= 4.991640 (08

4 4,228269E 12
3 T.R04341F 12

ATTEMPT SOL[T CN GRIUP 3 WITH §§ = 7.,804341F 12

We omit the next 34 pages
tracing the split attempis.

S6T



*x9ke PARTITICN NF GRDUP
FROM EUYGIBLE PRECTCTARS AROUND, THE CURRERT RaNK

MAX [MUM ELIGIALE BSS AT EACH STEP

GROUP 12 COULD NOT 8E SPLIT

12 sewtx

END OF STAGE 1 OF THE ANALYSIS. 7 FINAL GROUPS.

YARTATION EXPLAINEN (RSSUO)/TSS)

1-WayY ANALYSIS OF VARTAKRCE ON FINAL GROUPS

SOURCE
TOTAL
POCLFD REGRESSTON NN SAMPLE
BETWEEN INDIV SLDPES St1)
NBSNS BETWEEN INDTV LINES s{7
GROUP MEANS REGRESSINN LINE 503}

HMEAN SLOPE VS MEANS REGR SLOPE S{4)

1.332240€

4.TS5R55E™

3.565814E
7.539118E
5. 690066E
6.1442358E

Sus QF SOouaREs

13
12

11
12
11
10

96T

0 UP AND O 0O0uWN

MAXIMUM TDTAL BSS (LOOKAHEAD)

7 INELIGIBLE FOR SPLITTING.

= TeoX

hid MEAN SQUBARE A single regaession of house value on income
over the whote sample accounts for 36% of the
81536, 1.633931F 08 vahianee:

20
1. 4.795855E 12 480 x 10%% 354

e 18
6. 5.949690F 10 - 1332 x 19
B1523. S.247TB54F Q7T——— This is the wu tained vari around

5. 1.138013€ 11 { [
1 6 124230F 10 subgroup regression Lines.

Total SS {around mean) = 1332 x 1p10
© - Expl. by overall aggrcssdion -480 x {019
857 x 1010

~ Reaidual "error" -754 x 1910

= Marginal expl. by subgroup
negressions (diff. menns and
digf. slopes) 9g x 1910

98 x 1910
1332 x 1030

Arogund mean, explained by different subgroup regressions.

= 7.4% of variance

OR:

9§ x 1¢10

o 11.5% of vaniance anvbund overalf regression, explained.
852 x 10

For decomposition of the 98 x 100, sce Zext (S; +5;+5, =98z 1019},

é—; 04 it <8 diffenences in negression sfopes.

NOTE:  Mean dquanes and F-Tests ane inappacpriate with weighted data.




GROUC SUMMARY TAaRLE
13 GRMIPS (IF WHICH 7 ARE FINAL

GROUP 1 , N = 2C8R, SUM w = R.15750GF 04
Y MEAN= 2,007342%5 0%, VAPIANCF= 1,633931T 0a,  SS(LI/TSS= 1,000, BSS/TSS= 0.02¢
x 1.025471F 04 3.526965E 0T, CORRFLATION= 0,400, H= 1.29176k 00. £= 6.77255E 03, A(MIRM}= 2.00774F 04
SPLIT N LRGST PLAC/SMSA PSUZ1:h6, RSSII) = 3.50R410F i1 [NTN
2 WITH CLASSFS 3 &4 5.6
3 WITH CLASSES 1 2

GROUP 2« N= 1C76e SUM W =  4.119SCJOE O&
¥ MEAN= 2.401713F 04, VARIANCE= 1.8S79CRE 4R, SSILI/TSS= 0.586. BSS/TSS= 0.020
X 1.212770F C4 3.4495TE 07, CORRELATINN= 0,536 8= 1.39794F 00, A= T7.05830F Q3. A(NDRMI= 2,14525F Q4
SPLIT Ol NIST TO CNTR SMSa  21:5g2, RSS{L) = 2,6351S7E 11 1INTO

4 WITH CLASSES 1 2
S WITH CL&SSES 3 & 5

GROUP 4 4 N = TSl SuUn W =  2.%5210CF N6
Y MEAN= 2,2233470F C4, VARIANCE= 1,579482F CH, SSULY/TS5= 0.350. BSS/TSS= 0.00R
X 1.195866F G« 3.376765F 07, CORRELATINN= 0,584, R= 1.26253( 00, A= 7.73593F 03, A{NURHK)= 2.02364F 06
SPLIT ON BXT ACE FEAD SVICCS » BSS(LY = 1.090970F 11 INTC
& WITH £LASSES 2 1 4 5
7 WITH CLASSFS & .

GRCUP 2%, N = 1012, SUM W = 4,041600E C4
Y MEAN= 1.406229% C4, VARIANCE= 1.047471E CR, SSILI/TS8= 0,317, BSS/T55= 0.0
X R.432055E 03 2.915349E 07, CORRELATION= 9.507, R= 9.60458t-~01, A= T.96266F 03, A{NARMI= 1.T8B522[ 04
GROUP 6 » N = 718y SUM W = 2,5837CCE D4
Y MEdN= 2,280259E D4, vARIAMCE= ),520B3RF CR, SSILY/TSS= 0,205, RS§/TSS= 0.007
X 1.281530E 04 3.0082C%E 07, COHRRELATIGN= D.600, PR= 1.34R883F 00, &= S5.51837C 03, A{KPRMI= [.9%0c2f G4
SPLET AN BKT AGE FFAN 9V1CCS o RSSILL = 9.535016Fk 10 INTR

9 WITH CLASSES 4“9
7 WITH CLASSES 2 3

GROUP 5 « N = 295, SUM W = 1.1€3B00F C4
Y MEAN= 72.826T7065 C4, VARIANCE= 2.460673F (A, SSIL)1/TS5= 0,214, RBSS/TSS= 0.006
X 1.255647E Q& 3.620957F 07, CORRELATION= 0.636y Rz 1.65825F QU, A= T,44527F 03, A(NORM)= 2.451SBF Q4
SPLIT ON CURRENT REGICN 0OV&472 ¢ BSSIL) = 7.9685927E 10 INTD

10 WITH CLASSES 4 2 7
11 witH CLASSES 1

GROUP aky N o= IR, SUM W = 1.348000F Q4

Y MEAN= 2.349F83EF C4, VAR[ANCF= 1.657842f QA, SS5ILY/TSS= 0,167 ASS/TSS= 0.0

X 1.757920E Q4 2.575814E 07, CORRELATIAN= 0O.664, B= 1.5B385€ 00, A= 2,30735E 03s AINORM}= 1.9645SE C4
GROUP  #%, N = 33%, SUM W = 1.235700F 04

Y MEAN= 2,205689F 04, VARIANCE= 1.365040F 04, SS(L)/TSS= 0,126, BRSS/TSS= 0.0

X 1.30728RE 04 3,471 758E 07y CORRELATTCN= D,.551, B= 1.09275F 00, &= 7.77146E 03, A{NORM)= 1.90232F 0«
GROUP  11#%, N = S7, SUM w = 5,111000F 03

Y MEAN= 3.080515E 04, YARIANCE= 3,124820f CR, SS{LI/TSS= 0.119» BSS/TS55= 0.0

X 1.27¢541F 04 3.0A8642E 0T, CORRELATICN~ 0,698, B= 1.95977F 00. A= S.7330S9F 03, AINNRM)= 2.59123F 04
GROUP 10%. N = 188, SUM W = 6,5270CCE 03

Y MEANS 2,627646E C4, VARIANCE= 1.870159F CH, SSUL)/TSS= 0,091« BSS/TSS= Q.0

X 1.226937E 04 3.368C21E 07, CORRELATION= 0.577, R= 1.36007E 00, A= 9.45323F 03, A(NDRMI= 2.34575E 04
GROUP TN = T2, SUM W = 3.6B4000FE 03

Y MEAN= 1,904338E 04, VARIANCE= 1.891791E 0B, SSILISTSS= 0.052+ RS5/7155= C.007
X 5.95CT19E 03 1.858064E 07, CORRELATION= 0.589, B= 1.R7960F 00, A

7.85839E 03. A(NDRMI= 2.72121E 04

16T



SPLIT 1M CHERENT REGILN OvaT? » PSS01) = R.BA0HGAE LD INTD
12 WITH CLASSFS 4 2
13 WITH CLASSES 2 1

GPeupr  12Za, N ox 4le SUM W = 2.1450C0F 03

Y MEAN= ?2,171527% (&, Va®[ANCE= 7.%491%4F D8, SSILI/TSS= 0.060, ASS/TSS= 0.0

x R, GHENLIF N2 ?.050798E 07, CORKELATI(N= 8.7729, RB= 2.54792F Q0. A= 5.50690E 03, AINMRMI= 3,27421F 04
GRIUP 1%, x = T2y SUM W = 1.S79000F 02

Y MEaN= |67 714E Y4, VARJANCT= T.5B52¢4F Q7. SSILI/TSS= C.00R, RSS/TSS= Q.0

¥ $.9252LA0 23 l.642e62E 07, CORRELATION= 0,328y B= 7.03981F-0ls A= 1.11504E Q& A(NORM]= 1.R3950F 04

A (NORM) is the value the subgroup negression one
prediets for V when X-grand mean of X. It is useful
fon companing Lévels faee from X-efjects.
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100=RSS/TSS TAALE FNR O-STEP LONK-AFFAD
13 GROYPS, R PREDICTNRS
< INCICATES LRSS TRAN 1 SPLITS WIRE “ADE

PRENTTEN GROUP NUMRER (& INUICATES THE GROUP IS FINAL)

] 3 4 Al - 5 o B 11% 19% ? 13% 12%
1teR n.e 0.5 0.7 C.? Q.1 0.5 0.1 0.2 Q.4 0.2 0,1 c.1 0.2
1009 1.7 1.4 G. 8 C.s a.7 Gat 0.1 0.0 0,8 0.1 #Fdwr Fkwkd kekkd
2002 D.0 U.4 ).2 c.2 a.? 0.1 2.1 0.1 0.1 0.1 0.2 0.2 0.1
1650~ b 0.k 0.7 G. 2 0.2 0.0 0.2 0.1 0.0 0.0 0.1 0.0 v.0
178 2.5 2.0 Gev C.1 0.1 0.1 nD.2 C.0 0.3 0.3 0.4 0.2 0.0
1872 2. 1.5 It 0.2 0.k S tr 0.2 G.? ssas» I .7 C.1 0.1
2201 V.5 0.5 .7 0.1 0.4 0.2 B2 0.0 0.2 0.3 0.3 0.2 0.1
1420 3.9 q.7 0.7 .z 0.5 0n.? N .1 g.Q a.t g.1 Q.0 0.1

Note how close some competing predictons came - indieating
that anothea sample might give quite a different sef of ApLotA .

Most clode mumnens-up, however, wene wsed in later splifs,
e.g., VIS7Z in groups 5 and 7.
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100%88S/TSS TARLE FOR (-STEP LONK-AHFAD
13 GROUYPS, B PREDICTNRS

MAXTMUM RSS REGARNLESS OF ELIGIARILITY

PREDICTOR GROUP MUMBFR (% [NDICATES THF GROUP 1S5 FINALY)

1 3 4 2* [ El * B 11+ 0% 1 13% 12%
1le8 Q.9 0.5 c.2 0.3 0.1 0.5 J.1 D2 0.4 0.2 3.2 0.1 0.2
1009 1.7 t.2 0.8 0.4 a.7 Q.4 3.1 J.Q Q.4 Ol skaEemaTihkdthzas &b
2002 0.3 0.6 c.3 0.2 0.2 0.1 0.1 .1 0.1 D.1 0.2 0.2 0.1
1506 2.4 0.6 0.2 0.2 0.2 0.0 3.2 2.1 0.0 0.0 0.1 Q.0 0.0
1498 0.6 2.0 0.2 0.1 0.1 c.l 9.2 v.0 0.3 0.3 Db 0.2 G.0
1572 2.3 1.6 Q.6 .2 0.6 0.4 0.2 Q. 3¥*renss Q.4 0.7 0.1 0.1
2001 4.5 0.¢& .7 .1 0.4 wel Ja2 Dea 8.2 0.3 0.3 0.2 a.1
1490 0.9 0.2 G.7 C.2 0.5 C.2 0.5 0.1 C.2 0.1 L 0.0 0.1

00¢



CLASS
2 N
YMEAN
XMEAN
SLNAFE
N
YYE AN
XMEAN
SLNPE
4 N
YMEAN
XMEAN
SLOPE
5 N
YMEAN
XHEAN
SLOPE
6 N
YMHEAN
XMEAN
SLOPE

w

SLOPE

CLASS
2 N
YHME AN
XME AN
swoPr
3 N
YME AN
XMFAN
SLNVE
4 N
YME AN
XHME AN
SLAPFE
N

YME AN
XMEAKN
SLNPE

SLOPE

CLASS
2 h
YHEAN
XME AN
SLoef

1

661
l.7562E
T.956F
1.068€E

557
2.122F
1.090€
1.457€

4RK
2.2558EF
1.230F
1.495F

2?¢
1.99GE
1.1%€E
1.585E

159
1.998F
l1.228E
1.277E

1.292E

7
58
1.%40E
5.6R7E
1.6RAE
1.
?2.2368
8.036E
2.187€
2
1.142E
3,250k
AL341E
2
7.349E
4 HOAF
6.T01E

1.480%

372
1.3R7E
t.ORZE
1.778E

530

04
3
Q0

D4
00
D)
b2
ad
36
)4
00
34
o0&
G0

10

[+ 2
c3
o0
G4
Q3
¢
co
20
b1

03
21

Ot

<Q

PAOFILE NF CLASS MEANS AND SLOPES

& REQUIRED ROOMS 23:12 , ET2 = 0.C24

2

270
2.135¢ C4
a,528E 03
1.11%E CO

292
2.5326 04
1.243E C4
1.58RE €O

282
2.579E C4
1.363F C&
1.519t 00O

12¢&
2.398F C4
1.322F Q4
i+560F DO

1CS
2.252F €4
1.330E Gs
1.462E CO

1.798E 00

4 REOUIF

13%

34
Z+17CF C4
S.640F 03
£.38¢E CO

3
2.294F Co
€.412F 03
2.C48E 00

1.5CCF C4
z+ES2E €1

Z2.548E CO

EK1 AGE

2

20¢
2.2740 L4
1.18CF G4

2.C2%E Cn
1o

4

201
?.029F 04
9.990F 03
1.054€ 00

225
2+300E 04
1.218F 04
1.415F CC

101
2.304E 04
1.312F 04
1.361E 00

Q3
2.440f Ge
1.328E 02
1.552F €O

81
2.313% 04
1.409F 04
1.34RF Q0

1,263C 00

EN 2NGMs 27:

12w

24
1.31AF 04
2, 7T61F OR
T.0464F=-01

5

2.210E 04
7.575F 03
2.622F-C)
1
R, 00CF 03
3.72&E 09
n.¢
2
2.345E 04
4. AR6F 03
a.A/52F% Q)

7.036E-C1

HEAMD SVIQQe

L

1A4
20072 04
1.148F G4
1.468CF 00

21¢

GRQUP

2* &

391 143
t.503E 04 2.124c
6.5RAE 03 1.216E
B.767E-01 1.169€
269 212
l.646E D& 2.301E
9.124€ 03 1.243E
0.424E-01 1. 394E
203 189
.811E O 2.321F
1.04RE 04 1.326E
1.1338¢ 040 1.371E
99 91
1. 535 Q4 2. 444E
F.836L 03 1.3ASE
tehe2c 00 1.689E
Se a1
t.434F 04 2.313F
l.26E Ca 1.409E
1.066E 00 1.348F
2.4055-01 1.2409E

12, ETA = 0.C24
nague

y ETA = 0.C49
GRUP
2= &
163 1h4
l.638E 04 ?.CT2F
Q. H3IGF OF 1.148F
1.112% o 1.4R0F
211 1%

04
00
24
['ES
00
oo
04
0o
Q4
o0
04
00

'R ]

[¢J3
4
o0

5
69
2.425F
9. T60E
1.267¢
LY}
3.252F
1 31RE
1.379E
97
3.080F
1.456F
1.a7Q8
a3
2.787E
1.307¢
1.593F
24
2.082F
1.111€
2.033F

l.AGRE

5
&Y
2.GRTE
1.292f
? . GUSE
1oa

04
23
o0

b
04
o]}

04
04
00

DEY
04
00

a4
J4
0o

20

04
94
H

Ca
17
2.320E
1.253€
2.250F
128
2.730E
1.213E
1.483E
L3
2.41%E
1.284F
1.A21E
57
2.478E
1.358E
y.601E
[
2.0A3F
1.258"%
1.213¢

}.ERYLE

G4
164
2.072rF
1.1%0E
o8R0
z1e

04
04
20

0%
0a
oo

Q%
14
Qa

J4
4
o0

g
4
no

ua

B
10¢
2.085F G4
1.205E 04
8,915E-01
8s
2.246F D4
1.28RE D&
1.3738E Q0
76
2.1R6E 04
l.184E 04
7.L96E-01
34
2.4K2E Q4
1.379E Q&
1.873F 00
EX)
2.T03E W4
1.645E 04
1.38RF 00

1.0938 0@

lle
18
2.473E Q=
9.215 02
1,519 WY
31
2,433 Q4
1.3V1E Qs
2.071E 00
32
3.7 04
1.497E y&
2.1J3E 0OC
7

2.732E 04
La241F ge
LA LT
T
1.307F J&
Y« 23RF Q4
1.827¢ Q¢

l.36JE OC

11

14
TR F 04
Todelf Yo
.26 00

17

104
51
2.402E 04
1.002E 04
L. 73E @@
34
3.0C7E 04
1.361E D4
1.710F 30
60
7 .R2RE 0&
1.424E 04
1.549€ 00
26
2.041E 26
1.342€ 0«
,652F-01
17
7.357E 06
S.8F3E 03
2.772¢ 20

L.360E 00

o=

e

2.57850 v

L 234E D4

JTREE D0
%

10t



_YMEAN +270E _C4 2. T61E 04 2.577E 04 1.813F 04 2.577€ 04 3.110F Q& 2.577E 04 0.0 3.433F O4 2.795E
XMEaN 1257E704 1U3TO0ETOR TYU3ISBE 04 T1.09BF 04 1734BE"04 "~ 1.410E°0a  ~ 1.3%8E 04 " 0.0 VJ60LET 04~ T1.4Y9E
SLOPE  1,ATSE G0 1.7C8F €O 1,635F 00 1,293E 00 1.635E 00 1.801F 00 1.635E 00 0.0 2.122E 00 1.322F
4 N 479 268 195 211 195 73 0 195 22 51
YMEAN  2.134E 04 2.474E L4 2.234E 04 1.,ATTE 04  2.334E 04  2.RQSE 04 0.0 2.334E D6 3.0b4E D4 2.631F
XMEAN  1.273E 04 1.4156 C4  1,427F 04  1,0B3E 06 1.427E 04  1.386F 06 0.0 1.427E 04  1.500F 04 1.310E
SLCPE 1.224F 00  1.200F 00 1.128E 00  9.9688E-01 1.128€ 00  1.401F 00 D.0 1.128E 00 1.719F 00 1.126f
50N 378 185 140 193 149 45 0 140 s 30
YMEAN  1.90BE 04  2.219F 04 2.037E 04 1,620E 04  2.037F 04 2.738E 04 0.0 2.037E D4 2.567E 04  2,R62E
XMEAN  9.781F 03  1.156F G4  1,150F G4 B.134F 03  1.150€ 04 L.172€ 04 0.0 1.1S0E 04  1.066E 04 1.250€
SLUPE 1,124 Q0 1,217 60  T,061E 00  9,Q73E-0) 1.061E 00 1.603F 00 0.0 1.061E 00 1.451E 0C 1,664E
6 N 329 95 13 734 [+} 22 0 a 7 15
¥MEAN  1,530F A4 1,BT?E 04  1,906F 04  1,376E 04 0.0 1.TABE 04 0,0 0.0 1.4B%E 04 1.948E
XMEAN  4,764F 03  5,591F G3  5,951F 03  4,3965 03 0.0 4.397E 03 0.0 0.0 T2J892FE 03 5.41af
SLDPE 1,507 ¢  1.8B8F €& ],AB0F 0O 1,220 00 0.0 2.166F 00 0.0 0.0 9.852E 0C 1.994F

SLAPE 1.292F 30 1.3%8¢ 00 1.263E 00 9.605E-01 1.349€E QU 1.A58E 0Q 1.684F 00 1.093E Q0 1.960E 0O 1.360F

BKT AGE PFAD ©SV1009 + ETA = 0.049
feloxs N
CLASS 1 13* 12*
& N 73 4l 32z

YMF aN 1.204E Q& 2.172E C4 1.532E C&
XVEAN 5.851E 03 £.G69F €3 5.925F 03
SLOPE 1.R40E a0 Z.548F Q0 T.036E-01

SLGPE 1.4580€E 00 Z.5488 Q0 7.036F-01

SEX f MAR STATUS , ETA = 0.029
GrOUP

CcLASS 1 2 4 2% ~ [ 5 ax ax 11= 10»

1N 166€C a4h 07 L S&6 232 326 240 86 155

YHEAN 2.109E Q4 7.524F Qs 2.340F 04 l.s7QE Q& 2.%65E Q0% 2.973F Q4 Z2.391E 04 2. 343F 04 2.262E8 Q¢ 2. T41E
XVEAN 1.143E Qo 1,327 C« 1.312€ 04 9.475E 0% 1.3A5E 0% 1,363 04 1.294F Q4 1.456F 04 L.3IB6E D& 1.345€
SLOPE 1.369F 90 1.468€ CC 1.33380 00 YL.0L19E 00 1.400% o0 1.692€ 00 1.TORE 09 1.160F DO 1.9%4E 00 1.3RSE
2 N az 37 32 45 24 S S 16 2 3
YME &N 1,443E g 1.€3CF Ca 1.583F 0Qa 1.325¢C 04 1.844F 04 1.869F D& 3.6447F 04 1.540E 04 6.600E 02 2,164
XMEAN 6.390E O3 7.890F 03 7.940F 03 5.450E 02 1.051E 04 7.62RE 03 1.3330 0% 9.973E 03 &, 025E Q2 1.150¢
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Appendix VI

A Note on Partitioning for Maximum
between Sum of Squares

11/10/62

by W. A. Ericson

1. The Problem

This note presents some results, both positive and negative, concerned with
analysis of the following problem:

One is given k>2 sets of observations, where

Xi,

Ny, i=1,2, 0,k
is the number of observations in that set. The problem is to partition these k
sets of observations into two nonempty classes such that '"between class sum of
squares" is maximized. In other words, to find I, a set of any m (1sm<k)} of

the k indices i =1, 2, ..., k, such that
- =2 —2
Nplxp = )7 + Np(xg - x) 1

is maximized, where

N_ = I N, , N== L N, ,
I qer i1t

X, == £ N, x, , xx == [ Nx ,
I I iel i 71 I NI 1fT i~i

and x is the overall mean, i.e.,

; _ NIXI + Nixi
TN F N-
NI NI
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2. Previous Results

No literature

search having been made, it is not known whether this prob-

lem has been researched by other investigators. This remsains a point for further

study.

3. Restatement and

Assumptions

It is well-known that the problem ocutlined above is basically unchanged by

the addition of the

same arbitrary constant to each Ei. It may thus be assumed

without loss of Qenerality that

;iiﬁéz...§§k>o (2)

Furthermore, it is easily seen that maximizing (1) by choice of 1 is equivalent

to maximizing

£(1)

-2 ~ .2
(Npxp) (Ngx7)
i Ny

(3)

4. A Negative Result

The following

algorithm was suggested for finding I and its complement,

I, which maximizes (3):

a)

b)

c)

d)

Compute f(I) for 1 taken, in turn to be
{1y , {2}, ..., {k} .

Pick the maximum £(I) over these 1I's.
Suppose, e.g., I = {a} maximizes £(I)
over the 1's considered in (a).

Compute f(I) for I taken in turn to be
{a,1} , ..., {a, a -1} , {a, a+ 1} ,
{a, k} .

Choose that I, among those considered in (c)
which maximizes £(I), say I = {a,b} . If

£¢ {a} ) > £( {a,b} ), stop and assert I = {a}
yields maximum value of (3), otherwise continue
the process, looking next at £(I) for I's of
the form {a,b,i} , 41 # a, i # b, repeating
steps (c) and (d) above.

This procedure does not lead invariably to the optimum or maximizing par-

tition, L. That this is so is demonstrated by the following counterexample:

Suppose k = 5

and the data are as shown below:
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i 1 2 3 4 5

2;: 3.1 3.0 2.0 2.0 1.0

N.: 1 2 3 1 3
1

It is easily verified that

1 I £(I)

{1} {2,3,4,5} 41.72111
{2} {1,3,4,5) 42.85125
{3} {1,2,4,5} 40.40142
{4} {1,2,3,5} 39.31764
{5} {1,2,3,4} 44,77285

Following the suggested algorithm we next look at I = (5,1i) ,
i=1,2,3,4, and obtain the following:

1 I (1)
{5,1} {2,3,4) 41.96916
{5,2} {1,3,4} 40.84200
{5,3} {1,2,4} 44.30250
{5,41 {1,2,3} 4425166

Each of these values of £(I) beding less than £{ {5} ), we conclude, as per the
suggested algorithm, that I = {5} maximizes (3). This is not true since it is

easily shown that

£{ {1,2} ) = 44.88904 > £( {5} ) = 44.77285

5. The Basic Result

It will be proved in this sectlon that (3) is maximized over all possible
I's by I* where I* is that set Im = {1,2, ..., n} , 1l<m<k for which
f(I*)Zf(Im) for all m. Thus to find the maximizing partition one need only com-
pute f(I) for the k -1 sets Im and choose the maximum, Furthermorﬁ, I*,
5 indi-

vidual observations into two sets {(assuming each individual observatio% within

obtained in this fashion, maximizes (3) over any partition of the N = I N

any set equals the set mean ;i say).

The present proof of these assertions, while straightforward, involves con-
siderable tedious algebra. Further study may yield more succinct and more tidy
demonstrations. The present proof is given in two parts. We first state and

prove the theoretical results, in some degree of generality and then make the
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necessary identifications to the problem stated in 8 1 by which the assertions
stated above become established.

We adopt the following notation: let

a;>a,%a,>. .. 2ay, (4)

be any nonincreasing sequence of real positive numbers. Let Pm and P be any
n

partition of the N ai's, i.e., Pm is any get of m of the ai's and Pn is

the set of the remaining n=N-m ai's. Further, let Hm, Lm and M be re-

spectively the set of the largest m ai's, the set of the smallest m a,'s, and

i
1

the n - m middle a;'s. (It is assumed that n>m, hence M 1is null if n = m,

otherwlse not.) Thus

Hm = {al, ey am}
Lo = lagema oo 3y
L N e Y

The first result may then be stated as

Theorem A: At least one of the following is true:

N’ e et e nt ae N’
a) m + n‘ Z m + n
2 2 2 2
L)) (00 + (0 ) @) ()
b) m + m 5 m + n ,
m n - m n
where Z(Hm) = aiéHm a; etc.

¥ Proof: The theorem is obviously true if either Z(Lm) = Z(Pm) or Z(Hm) = Z(Pm).
We then consider the other cases, 1i,e,, Z(Hm) > Z(Pm) > E(Lm), and show that if
(a) fails then (b) holds. ‘Straightforward algebral shows that if (a) is False,
then

(P + mE@) £ IO - aGE) + IE D] >0 (5)

1The major hint needed in going from (a) and (b) to (5) and (6) is to re-
place
@+ @)1’ by [T o+ Il [T + E) - I(H)]

and to replace

2
[Z(Pn)] by [Z(Pn)] [Z{m) + Z(Lm) + Z(Hm) - Z(Pm)] ete,
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Similarly, (b) is true if

(mI(P ) + m(I(M) + E( ) - n((L) + Z(Pm))] > 0. (6)

That (5) implies (6) is obvious, since the left side of (6) is greater than or
equal to the left side of (5). 4

The second main result is given by the following:

Theorem B: Suppose

= = .. = > ..
&1 Uptnts ” Cmbmbel 2

>
2 pbnti+r

wvherem+n + 2 +r=N, m>0,n>0,2>0, r>0, andm + r > 1. Then at

least one of the following statements 1s defined and true:

1 2 1 2 1 2 1 2
d) o (Zm) + n+?.+r((n+£)a + -Er) > = (Em + na)” + - (2a + Zr)
or

1 2 1 2 1 2 1 2
d) e Gyt (nt)a) _+ F G 2= (B tna)” + A Qat 1),
m

where a = a, i=m+1l, ..., m+n+ &, stiélai )

T
L % iR Cnimre

Proof: If m= 0, it is immediately verifiable that (d) is true. Likewise, if
r = 0, then (c) is true. Suppese then that m, n, r, and £ are all positive,

Straightforward algebra shows that {(c¢) is equivalent to

2mr (min) ar

' ~ 2 m (mtn
N A = (zm) - 2mal > T (uHetr) (R+r) r

2
2 Totadn) () OB

Lo [ - (0rr)n)? - [ (mn)e® + (24r)n’] 2
a(oti+r) (2+r) a

= B

and (d) is equivalent to:

' - ) )
4" A= (zm)Z - 2ma < (m-:zziz)(nﬂ'n (Zr)Z _ Z(WFI(I-;ir)(Mn) azr
2 2 2
{[(mn)t - (4+rin]” - r{(@mm)L” + +rin" ]} 82 - ¢

L(2+1r)
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To show that either (¢) or (d) is true (or both) it suffices then to show that if
(c') is false then (d') must be true. This 18 clearly established if the right
side of the inequality in (¢') is less than or equal to the right side of the in-
equality in (d4'), i.e., if ¢ - B > 0. But some simple but tedious algebra shows
that

g o () [(n#p4r) (mbntl) - mr)

C- L (ore+r) (GFr)

£ - ral’

which is obviously nonnegative.A
To use these results for the problem stated in B 1 above and to establish
the assertions at the beginning of the present section one need only identify the

following nonincreasing sequence with those sequences of a,'s referred to above:

i
R e E s Ep e By Egs e By e B e B
N Ny N3 N

Then it is clear that Theorem A establishes the fact that for any partition of

=

these N = ¥ Ni ;£ 's into two sets of m and n = N - m elements respectively

will yield a value of ''between sum of squares,” (3), no larger than that for ei-

=

ther the partition comsisting of the m Ilargest %, 's and the N-m remaining

i
or the m smallest xi's and the N-m remaining, This result clearly includes the
case where for every i = 1, ..., k all Ni ;i's are put in the same one of the

two sets forming the partition, i.e., the case where the partition is of the k
gets of means rather than of the N individual means.

Theorem B then closes the remaining loophole, viz., it may be that some
E-N. and Nz =N -N

I 16T I I
observations, respectively, has a sum of squares, (3), which is no larger than

partition, I, I, of the k sets of means into N

that for the partition consisting, say, of the largest N individual x.'s and

I i
the NT remaining ;i's. However, this latter partition may very easily split
one set of Ni identical §i's. Theorem B then says that for any partition of
the N individual ;i's into the m Jlargest and N - m remaining and where the

partioning point occurs within one of the k sets of obgservations then there
is another partition into largest and smalliest ;i‘s where the partitioning point
occurs between two of the k sets of xi's and which has a between sum of squares
no smaller than the original partition.

Theorems A and B then together demcnstrate that to find the partition which
maximizes (3) one need only look at the k - 1 partitions, Im, where
Im ={1,2, ..., m}, 1 <m=<k, and choose that one yielding the largest value

of (3).
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6. A Final Negative Result

It was further conjectured that perhaps (3), f({Im}), m=1,2, ..., k~1,
treated as a function of m was well-behaved in the sense of say concavity and
that, e.g., if f({Il}) > f({IZ}) then one might be able to stop and assert
I* = Il,' and thus not look at all k - 1 Im's. This is not the case, however,

as witnessed by the following counter example:

i 1 2 3 4 5

X 3.000 2.01000  2.0010 2.0001 1.0000

N, 1 1 1 1 2 ,
1

here one finds the following values for f({Im}), m=1, 2, 3, 4:

b )
{1} 21.84
{1,2} 21.55
{1,2,3} 21.72
{1,2,3,4} 22.30

7. Conclusions

The above results indicate that to find the partition which maximizes the
between sum of squares, (3), one need only compute (3) for the k - 1 partitions
consisting of the first set of size Nl and all the rest, the first two sets of
size Nl + N2 and all the remaining, etc., and choosing that one which maximizes
(3). Further the partition found in this manner maximizes (3) over all parti-
tions of the N = % Ni individual observations (assuming each observation with~
in any one of the k sets equals the mean of that set). Finally it does not
seem possible to improve on this technique, in the sense of reducing the compu-

tational burden.
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PROBLEMS IN THE ANALYSIS OF SURVEY DATA,
AND A PROPOSAL

James N. MoraaN A8p JoHN A. Sovquist*
University of Michigan

Most of the problems of analyzing survey data have been reasonably
well handled, except those revolving around the existence of interaction
effects. Indeed, increased efliciency in handling multivariate analyses
even with non-numerical variables, has been achieved largely by

. assuming additivity. An approach to survey data is proposed which
Append'x Vil imposes no restrictions on interaction effects, focuses on importance
in reducing predictive error, operates sequentially, and is independent
of the extent of linearity in the classifications or the order in which

the explanatory factors are introduced.

A. NATURE OF THE DATA AND THE WORLD FROM WHICH THEY COME

HE increasing availability of rich data from cross section surveys calls for

more cfficient methods of data scanning and data reduction in the process
of analysis. The purpose of this paper is to spell out some of the problems arising
from the nature of the data and the nature of the theories which are being
tested with the data, to show that present methods of dealing with these
problems are often inadequate, and to propose a radical new method for
analyzing survey data. There are seven things about the data or about the
world from which they come which need to be kept in mind.

First, there is a wide variety of information about each person interviewed
in a survey. This is good, because human behavior is motivated by more than
one thing. But the very richness of the data creates some problems of how to
handle them,

Second, we are dealing not with variables for the most part, but with classi-
fications. These vary all the way from age, which can be thought of as a
variable put into classes, to occupation or the answers to attitudinal questions,
which may not even have a rank order in any meaningful sense. Even when
measures seem to be continuous variables, such as age or income, there is good
reason to believe that their effects are not linear. For instance, people earn
their highest incomes in the middle age ranges. Expenditures do not change
uniformly with changes in income at either extreme of the income scale.

Third, there are errors in all the measures, not just in the dependent variable,
and there is little evidence as to the size of these erf‘ors, or as to the extent to
which they are random.

Fourth, the data come from & sample and generally a complex one at that.
Hence, there is sample variability piled on top of measurement error. The
fact that almost all survey samples are clustered and stratified leads to prob-
lems of the proper application of statistical techniques. Statistical tests usually
assume simple random samples rather than probability samples. More ap-

* The suthora are indebted t0 many individuals for advice and improvements. In particular, Professor L. J.
Savege noticed that some interactions would remain hidden, and Professor William Ericson proved that locating
the beat combination of subclasses of 8 single code was simple enough to incorporate into the program. A Ford
Foundation grant to the Department of Economics of the Univeraity of Michigan supported the author's work on
some substantive problems which led to the preseat feous on methods, Bupport from the Roockefaller Foundation
is also gratefully acknowledged.

Reprinted by permission of the Journal of the American Statistical Association,
58 (June 1963), pp. 415-35.
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propriate tests have been developed for simple statistics such as proportmns,
means, and a few others.

Fifth, and extremely important, there are intercorrelations between many
of the explanatory factors to be used in the analysis—high income goes along
with middle age, with advanced education, with being white, with not being
a farmer, and so forth. This makes it difficult o assess the relative importance
of different factors, since their intercorrelations get in the way. Since many of
them are classifications rather than continuous variables, it is not even easy to
measure the extent of the intercorrelation. Measures of association for cross
classification raise notoriously difficult problems which have not really been
solved in any satisfactory way.!

Sixth, there is the problem of interaction effects. Particularly in the social
sciences, there are two powerful reasons for believing that it is a mistake to
assume that the various influences are additive. In the first place, there are
already many instances known of powerful interaction effects—advanced
education helps a man more than it does a woman when it comes to making
money; and it does a white man more good than a Negro. The effect of a decline
in income on spending depends on whether the family has any liquid assets
which it can use up. Women have their hospitalizations at different ages than
men. Second, the measured classifications are only proxy variables for other
things and are frequently proxies for more than one construct. Several of the
measured factors may jointly represent a thecretical construct. We may have
interaction effects not because the world is full of interactions, but because our
variables have to interact to produce the theoretical constructs that really
matter. The idea of a family life cycle, unless arbitrarily created out of its
components in advance, is & set of inferactions between age, marital status,
presence, and age of children.2It is therefore often misleading to look at the
over-all gross effects of age or level of education. Where interaction effects
exist, the concept of a main effect is meaningless, and it is our belief that in
human behavior there are so many interaction effects that we must change our
approach to the problems of analysis.

Another example of interaction effects appeared in the attempt to build
equivalent adult scales to represent the differences in living expenses of families
of different types. After many years of ansalysis, one of the most recent studies
in this field has concluded “when its size changes, families’ tastes appear to
change in more complicated ways than visualized by our hypothesis.”® More

1 One seemingly appraopriate measure for two classifications both being used to predict the same variable ia one
called lambda suggested by Goodman and Kruskal. With many kinds of survey dats this measure, which assumes
that an abaolute prediction has to be made for each individual, is too insensitive to deal with aituations where each
class on the predicting characteristic has the saame modal clasa on the other charasteriatic that is to be predicted.
An effective and properly stochastic measure would be derived by aesigning a one-zero dummy variable to belonging
1o each clasa of each of the two characteriatics and then computing the canonieal correlation hetween the two seta
of dumuny variables.

Sec Leo A. Goodman and William H, Kruskal, “Measures of association for cross clasaifications,” Journal of
the Amsrican Statistical Association, 49 (December, 1954}, 732-64.

t John B. Lansing and James N. Morgan, "Congumer finances over the life cycle,® in Consumer Behavior,
Volume I1, L. Clark (Editor) (New York: New York University Press, 1955).

Bee also Leslie Kish and John B, Lansing, “Family life ¢ycle s an indepsndent variable,” American Sociclogical
Review, XXI1 (October, 1957}, 512-9,

# In other worda family composition had different effects on different expenditures. F, G. Foraythe, *The rela-
tionship betwcen family size and family expenditure,” Journal of the Royal Statistical Sociely, Seriea A, vol. 123
(1961}, 307-97, quote from p, 888,
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recently in analyzing factors affecting spending unit income, it has become
obvious that age and education cannot operate additively with race, retired
status, and whether the individual is a farmer. The attached table illustrates
this with actual average incomes for a set of nonsymmetrical groups. The
twenty-one groups account for two-thirds of the variance of individual spend-
ing unit incomes, whereas assuming additivity for race and labor force status
even with joint age-education variables produces a regression which with 30
variables accounts for only 30 per cent of the variance. A second column in the

TABLE 1. SPENDING UNIT INCOME AND THE NUMBER IN THE
UNIT WITHIN VARIOUS SUBGROUPS

Spending unit | Number Number

Group average (1958) in of

income unit cases

Nonwhite, did not finish high school $ 2489 3.3 191

Nonwhite, did finish high school 5005 3.4 67

White, retired, did not finish high school 2217 1.7 272

White, retired, did finish high school 4520 1.7 72
White, nonretired farmers, did not finish

high school 3950 3.6 87
White nonretired farmers, did finish high

school 6750 3.6 24

The Remainder
0-8 grades of school

18-34 years old 4150 3.8 72

35-54 years old 4670 3.8 240

55 and older—not retired 4846 2.2 208
9-11 grades of school

18-34 years old 5032 3.7 112

35-54 years old 6223 3.4 202

55 and older—not retired 4720 2.1 63
12 grades of school

18-34 years old 5458 3.3 193

35-54 years old 7765 3.8 291

55 and older—not retired 6850 2.0 46
Bome college

18-34 years old 5378 3.0 102

35-54 years old 7930 3.8 112

55 and older—not retired 8530 2.0 38
College graduates

18-34 years old 7520 3.8 80

35-54 years old 8866 2.9 150

55 and older—not retired 10879 1.8 34

Bource: 1850 Burvey of Consuiner Finanoes,
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table gives the average number of people in the unit, and it can be seen that
this particular breakdown is not particularly useful for analyzing the number
of people in a unit. On the other hand, if each group were to be used to analyze
cxpenditure behavior, income, and family size are likely to operate jointly
rather than additively.

In view of the fact that intercorrelation among the predictors on the one
hand and interaction effects on the other are frequently confused, it seems
useful to give a pictorial example indicating both the differences between them
and the way in which they operate when both are present. Our conecern is not
with statistical tests to distinguish between them, but with the effects of
ignoring their presence.

Chart I shows pictorially three cases, real but exaggerated. First, there is a
case where the two explanatory factors, income and education, are correlated
with one another, but do not interact. Second, a case where income and being
self-employed interact with one another but are not correlated, and third, a
situation where income and asset holdings are correlated with one another and
also interact in their effect on saving. The ellipsoids represent the area where
most of the dots on a scatter diagram would appear. In the first case, it is
clear that a simple relation between income and saving would exaggerate the
effect of income on saving by failing to allow for the fact that high income
people have more education, and that highly educational people also save more.
An ordinary multiple regression, however, using a dummy variable representing
high education would adequately handle this difficulty. In the second case
there is no particular correlation, we assume, between income and being seli-
employed, but the self-employed have a much higher marginal propensity to
save than other people. Here, the simple relationship between income and
saving becomes & weighted compromise between the two different effects that
really exist. A multiple correlation would show ne effect of being self-employed
and the same compromise effect of income. Only & separate analysis for the
self-employed and the others would reveal the real state of the world. In the
third case, not only do the high-asset people have a higher marginal propensity
to save, but they also tend to have a higher income. Multiple correlation clearly
will not take care of this situation in any adequate way. It will produce an
“income effect” which can be added to an “asset effect” to produce an es-
timate of saving. Here the income effect is an average of two different income
effects. The estimated asset effect is likely to come out closer to zero than
if income had been ignored. Of course, where interactions exist, there is little
use in attempting {0 measure separate effects.

Finally, there are logical priorities and chains of causation in the real world.
Some of the predicting characteristics are logically prior to others in the sense
that they can cause thein but cannot be affected by them. For instance, where
g man grows up may affect how much education he gets, but his education
cannot change where he grew up. We are not discussing here the quite different
analysis problem where the purpose is not to explain one dependent variable
but to untangle the essential connections in a network of relations.

In dealing with a single dependent variable representing some human be-
havior, we might end up with at least three stages in the causal process—early
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childhood and parental factors, actions and events during the lifetime, and
current situational and attitudinal variables. If this were the end of the prob-
lem we could simply run three separate analyses. The first would analyze the
effects of early childhood and parental factors. The second would take the
residuals from this analysis and analyze them against events during a man’s
lifetime up until the present, and the third would take the residuals from the

SAVING Education
/_High Education
Low Education
Muticollinearity, i.e., correlation
between income and education
but no interaction
O_.—
/7
INCOME
SAVING Self - Employed
-~
~
Interaction, but no multicotlinearlty yid
(no correlation between income ond ” Others
self ~employment ) ”
04
INCOME
High Assets
SAVING
e
Both
Low Assels
——=—=== Regression with pooled data 01
Separate regressions -
Concenfration of darta
INCOME

CHaRT I. Combinations of Multicollinearity and Interaction and Their Effects.
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second analysis and analyze them against current situational and attitudinal
variables. But the real world is not even that simple, because some of the same
varigbles which are logically prior in their direct effects may also tend to me-
diate the effect of later variables. For instance, a man’s race has a kind of
logical priority to it, but at the same time it may affect the way other things
such as the level of his education operate to determine his income.

This is an impressive array of problems. Before we turn to a discussion of
current attempts to solve these problems and to our own suggestions, it is
essential to ask first what kind of theoretical structure is being applied and
what the purposes of analysis are.

B. NATURE OF THE THEORY AND PURPOSES OF ANALYSIS

Perhaps the most important thing to keep in mind about survey data in
the social sciences is that the theorctical constructs in most theory are not
identical with the factors we can measure in the survey. The simple economic
idea of ability to pay for any particular commodity is certainly a function not
only of income but of family size, other resources, expected future income,
economic security, and even extended family obligations. A man’s expecta-
tions about his own economic future, which we may theorize will affect his
current behavior, might be measured by a battery of attitudinal and expecta-
tional questions or by looking at his education, occupation, age, and the ex-
perience of others in the same occupation and education group who are already
older. The fact that the theoretical constructs in which we are interested are
not the same as the factors we can measure, nor even simply related to them,
should affect our analysis techniques and focus attention on creating or locating
important interaction effects to represent these constructs.

Second, there are numerous hypotheses among which a selection is to be
made. Even if the researcher preferred to restrict himself to a single hypoth-
esis and test it, the intercorrelations among the various explanatory factors
mean that the same result might support any one of several hypotheses.* Hence,
comparisons of relative importance of predictors, and selecting those which
reduce predictive errors most, are required.

When we remember that there are also variable errors of measurement, the
problem of sclecting between alternative hypotheses becomes doubly difficult,
and ultimately requires the use of discretion on the part of the researcher.
Better measurement of a factor might increase its revealed importance.

Tinally, researchers may have different reasons why they wish to predict
individual behavior. Most will want to predict behavior of individusals in the
population, not just in the sample, which makes the statistical problem some-
what more complicated. But some may also want to focus on the behavior of
some crucial individuals by assigning more weight to the behavior of some
rather than others. Others may want to test some explanatory factors, how-
ever small their apparent effect, because they are important. They may be
important because they are subject to public policy influences or because they

4 For an excellent atatement of the application of this problem to the economists’ concern with the permanent
income hypothesia versus the relative income hypothesin, sce Jean Crockett, “Liquid seseta and the theory of con-
sumption” {New York: National Bureau of Economio Research, 1862) (mimeographed).
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are likely to change over time, or because they are crucial to some larger
theoretical edifice. The nature of these research purposes thus combines with
the nature of the date and their characteristics to make up the problem of how
to analyze the data.

C. THE STRATEGY CHOICE IN ANALYSIS

One can think of a series of strategies ranging from taking account of only
the main effects of each explanatory classification separately or jointly, to
trying to take account of all possible combinations of all the classifications at
once. Even if there were enough data to allow the last, however, it would not
be of much use. The essence of research strategy then consists of putting some
restrictions on the process in order to make it manageable. One possihility is to
cut the number of explanatory factors utilized, and another is to restrict the
freedom with which we allow them to operate.’ One might assume away most
or all interaction effects, for instance, and keep a very large number of ex-
planatory classifications. Still further reduction in the number of variables is
possible, if one assumes linearity for measured variables or, what amounts to
the same thing builds arbitrary scales, incestuously derived out of the same data
in order to convert each classification into a numerical variable. Clearly, the
more theoretical or statistical assumptions one is willing to impose on the data,
the more he can reduce the complexity of the analysis. A difficulty is that
restrictions imposed in advance cannot be tested. There seems some reascn to
argue that it would be better to use an approach which develeped its restric-
tions as it went along. In any case keeping these problems in mind we turn now
to a summary of how analysis problems in using survey data are currently being
handled and some of the difficulties that present methods still leave unsolved.

D. HOW PROBLEMS IN ANALYSIS ARE CURRENTLY BEING HANDLED—AN APPRAISAL

We take the seven problems in section A in the same order in which they are
presented there plus the major problem in section B, that of theoretical con-
structs not measured directly by the factors on which we have data. The first
problem was the existence of many factors. The simplest procedure has been
to look at them one at a time always keeping in mind the extent to which one
factors is intercorrelated with others. Another technique, particularly with
attitudes, has been to build indexes or combinations of factors either arbi-
trarily or with the use of some sort of factor analysis technique.® The difficulty
is that the first of these is quite arbitrary, and the second is arbitrary in a dif-
ferent sense, in that most mechanical methods of combining factors are based
on the intercorrelations between the factors themselves and not in the way in
which they may affect the dependent variable. It is quite possible for two
highly correlated factors to influence the dependent variable in opposite ways.
Building a combination of the two only on the basis of their intercorrelation
would create a factor which would have no correlation at all with the dependent

§ For a discussion of alternative strategies made while commenting on a scries of papers, ase James Morgan,
C ats,” in C ption and Saviny, Volume I, L. Friend and R. Jones (Editors.) (Philadelphia: University of
Pennaylvania Presa, 1880}, pp. 276-84.

¢ Charles Westoff and others, Family Planning in Meropolitan America (Princeton: Prineeton Univergity Preas,
1961).
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variable. With highly correlated attitudes, however, some such reduction to a
few factors may be required and meaningful.

With the advent of better computing machinery, the problem of multiple
factors has frequently been handled by using multiple correlation techniques.
The use of these techniques, of course, required solving the second problem,
that arising from the fact that in many cases we have classifications rather
than continuous variables. This has been done in two ways, first, by building
arbitrary scales. For instance, one could assign the numbers one, two, three,
four, five, and six to the six age groups in order. Or if age were being used to
predict income, one could assign a set of numbers representing the average
income of people in those age groups.” But unless machine capacity is ex-
tremely limited, a far more flexible method which is coming into favor is to
use what have heen called dummy variables.® The essence of this technique is
to assign & dummy variable to each class of a characteristic except one. It is
called a dummy variable because it takes the value one if the individual belongs
in that subclass or a zero if he does not. If ordinary regression procedures are
t0 be used, of course, dummy variables cannot be assigned to every subclass of
any characteristic, since this would overdetermine the system. However, af
the Survey Research Center we have developed an iterative program for the
IBM 7090, the output of which consista of coefficients for each subelass of
each characteristic, the set for each characteristic having a weighted mean of
zero. This means that the predicting equation has the over-all mean as its
constant term, and an additive adjustment for each characteristic, depending
on the subclass into which the individual falls on that characteristic. This is
the standard analysis of variance formulation when all interactions are as-
sumed to be zero. Of course, the coefficients of dummy variables using a regular
matrix inversion routine can easily be converted into sets of this sort. There
remain two difficulties with this technique. One is the problem of interaction
effects, which are either assumed away or bave to be built in at the beginning
in the creation of the classes. A second arises from the nature of the classifica-
tions frequently used in survey data. Even though association between, say,
occupation and the incidence of unemployment faced by an individual is not
terribly high, the oceupation code generally includes one or two categories such
as the farmers and the retired who, by definition, cannot be unemployed at all.
When dummy variables are assigned to these classes, it may easily oceur that
there is & perfect association between a dummy variable representing one of
these peculiar (not applicable) groups in ene code and a dummy variable
representing something else in another classification (not unemployed). If the
researcher omits one of each such pair of dummy variables in a regression
routine, he is all right,

A third problem, that of errors in the dats, is generally handled by not re-

* For an example see Jerry Miner, *Consumer Peraonal Debt—An Intertemporal Analysis,” in Consumpiion
and Saving, Volume II, I, Friend and R. Jones (Editors) (Philadelphia: University of Pennsylvanisa Press, 1960),
400-81.

® Daniel Buits, *The Use of Dummy Variables in Regression Equations,” Journal of the American Statistical
Associalion, 52 (December, 1957), 548-51.

T. P. Hill, “An Anpalysia of the Distribution of Wages and Salaries in Great Britain,” Econometrica, 27 (July,
1089), 355-81.
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jecting hypotheses too easily and by attempting to use some judgment in the
assessment of relative importance of different factors or different hypotheses
keeping in mind the accuracy with which the variables have probably been
measured.

The fact that the data come from a sample has frequently been ignored.
As the analysis technigues become more complicated, it becomes almost im-
possible to keep the structure of the sample in mind too. However, there is some
reason to believe that the clustering and stratification of the sample become
less and less important the more complex and more multivariate the analysis
being undertaken.?

What about intercorrelations among the predictors? The main advantage
of multivariate techniques like multiple regression is that they take care of
these intercorrelations among the predictors, at least in & crude sense. Indeed,
if one compares an ordinary subclass mean with the multivariate coeflicient of
the dummy variable associated with belonging to that subclass, the difference
between the two is the result of adjustments for intercorrelations. Where these
differences seem likely to be the result of a few major interrelations, some
statement as to the factors correlated with the one in question (and responsible
for the attenuation of its effect on the multivariate analysis) are often given to
the reader. It is, of course, true that where intercorrelations between two pre-
dictors are too high, no analysis can handle this problem, and it becomes
necessary to remove one of them from the analysis.

Perhaps the most neglected of the-problems of analysis has been the problem
of interaction effects. The reason is very simple. The assumption that no
interactions exist generally leads to an extremely efficient analysis procedure
and a great reduction in the complexity of the computing problem. Those of us
who have looked closely at the nature of survey data, however, have become
increasingly impressed with the importance of interaction effects and the
useful way in which allowing for interactions between measured factors gets
us closer to the effects of more basic theoretical constructs. Where interac-
tion effects have not been ignored entirely, they have been handled in a number
of ways. They can be handled by building combination predictors in the first
place, such as combinations of age and educsation or the combination of age,
marital status, and children known as the family life cycle.'® Sometimes where
almost all the interactions involve the same dichotomy, two separate analyses
are called for.* Interactions are also handled by rerunning the analysis for

¥ Actually there are no formulas available for sampling errora of many of the statistica from complex prob-
ability samples. Properly seclected part-aamplas can be used to estimate them by a kind of hammer-and-tonga
procedure, but this is expensive. See Lealie Kiah, “Confidence intervals for clustared samples,* American Sociological
Review, 22 (April, 1957), 154-65. So long &8 the samplea are representative of & whole population the basic
statistical model is presumably the “fixed” one, see M. B. Wilk and Q. Kempthorne, *Fixed, mixed, and random
models,* Journal of the American Statistical Asscciation, 50 (December, 1855), 1144-87,

See also L. Klein and J. Morgan, “Results of alternative atatistical treatmenta of sample survey data,” Journal
of the American Statistical Association, 46 (December, 1951), 442-80.

1 Guy Orcutt and others, Mier Jysis of Soci ic Systema (New York: Harper and Brothers, 1461).

1 For ingtance, hospital utilization waa studied separately for men and womern in Grover Wirick, Robin Barlow,
and James Morgan, *Population survey: Health care and ita financing,” Hospital and Medical Economics, Volume I,
Walter McNerney {(Editor) (Chicago: American Hospital Association, 1062).

Participation in recreation was atudied separately for those with and without paid vacations; see Eva Mueller
and Gerald Gurin, Perticipation in Outdoor Recreation: Factors A ffecting Demond Among American Adults (U.B,
(U.8.G.P.0., ORRRC Study Raport 20, 1962.)
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some subgroup of the population. In a recent study of factors affecting hourly
earnings, for instance, the analysis was rerun for the white, nonfarmer males
only, to test the hypothesis that some of the effects like that of education were
different for the non-whites, women, and farmers.!* A difficulty with this
technique, of course, is that if one merely wants to see whether the interaction
biases the estimates for the whole population seriously, one reruns the analysis
with the group that makes up the largest part of the sample. But if one wants
to know whether there are different patterns of effects for some small sub-
group, the analysis must be run for that small subgroup.

Another method of dealing with interaction effects is to look at two- and
three-way tables of residuals from an additive multivariate analysis. This
requires the process, often rather complicated and expensive, of creating the
residuals from the multivariate analysis and then analyzing them separately.'
‘Where some particular interaction is under investigation, an effective alterna-
tive is to isclate some subgroup on a combination of characteristics such a3 the
young, white, college graduates. It is then possible to derive an estimate of the
expected average of that subgroup on the dependent variable by summing the
multivariate coefficients multiplied by the subgroup distributions over each
of the predictors. Comparing this expected value with the actual average for
that subgroup indicates whether there is something more than additive effect.
1t is only feasible to do this with a few interactions, just as it is possible to put
in cross product terms in multiple regressions in only a few of the total possible
cases. Consequently, most of these methods of dealing with interaction effects
are either limited, or expensive and time-consuming.

Still another technique for finding interactions is to restrict the total number
of predictors, use cell means as basic data, and use a variance analysis looking
directly for interaction effects.l* Aside from the various statistical assumptions
that have to be made, this turns out to be a relatively cumbersome method of
dealing with the data. It requires a good deal of judgment in the selecting of
the classes to avoid getting empty cells or cells with very small numbers of cases,

12 James Morgan, Martin David, Wilbur Cohen, and Harvey Brazer, Incoms and Welfara in the United Stales
{(New York: McGraw-Hill, 1982).

Malcolm R. Fisher, *Exploration in savings behavior,” Bulletin of the Ozford University Inatituls of Stalistica,
18 (August, 1958), 201-77.

13 James Morgan, *An avalysis of residuala from ‘normal’ regressions,* in Coniribulions of Survey Methods to
Economics, L. Klein (Editor) (New York: Columbia University Press, 1954).

W F, Gerald Adams, Some Aspects of the Income Size Distribution (unpublished Ph.D. dissertation, The Uni-
vorsity of Michigan, 1956); and a summary, *The site of individual incomea: Socio-economie variables snd chance
variation,” Review of Econemics and Statistics, XL (November, 1958), 394-38.

James Morgen, *Factoraralated to consumer savings” in Contribulions of Survey Methods to Economics, L. Klein
(Editor) {Naw York: Columbiz Univeraity Prees, 1084).

Mordachai Kreinin, “Faoctors associated with stock ownership,” Revtew of Econemics and Siafiaiica, XLI
(February, 1059), 12-23; "Analyais of liquid asset ownership,” Review of Bconomics and Statistics, XLIII (February,
1461), 76-80.

M. Kreinin, J. Lanaing, J. Morgan, “Anulysis of life insurance premiums,® Review of Economics and Statistics,
XXXTX (February, 1057}, 4854,

Robert Ferber has pointed out that using the highest order interaction as *error” may hide significant main
effecta or lower-order interaction effects, and that the hetercacedasticity of means based on subcells of different
sizes may make the tests nonconservative. He has made use of the more complex method of fitting constants which
provides su exact test for interactions but assumes that the individual obeervstions are all independent. 8ince this
tssumption is not gorrect {or moat multistage samplea the results of this meathod are alss nonconservative. Ses
Robert Ferbar, “Sarvice expenditures at mid-century,” in Consumption and Saving, Yolume I, I. Friend and R. Jones
(Editors) (Philadelphia: Univeraity of Pennaylvanisa Press, 1060}, pp. 43660,
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and the unequal cell frequencies lead to heterogeneity of variances which makes
the F-test nonconservative. Sometimes interaction effects are considered im-
portant only when they involve one extremely important variable. In the case
of much economic behavior, current income appears to be such a variable. In
this case one can rely on covariance techniques, but these techniques tend to
become far too complex when a large number of other factors are involved.
Also, as more and more questions arise about the meaning of current income
as a measure of ability to pay, the separation of current income for special
treatment becomes more doubtful.

Finally, it is also true that if we resirict the number of variables, multiple
regression techniques, particularly using dummy variables, can build in almost
all feasible interaction effects. One way to restrict the number of variables is to
make an analysis with an initial set and run the residuals ageinst a second set
of variables. However, unless there is some logical reason why one set takes
precedence over another, this is treacherous since the explanatory classifications
used in the second set will have a downward bias in their coefficients if they
are at all associated with the explanatory classifications used in the first set.®

All these methods for dealing with interaction effects require building them
in somehow without knowing how many cases there are for which each inter-
action effect could be relevant. The more complex the interaction, the more
difficult it is to tell, of course.

The problem of logical pricrities in the data and chains of causation can be
handled either by restricting the analysis to one level or by conducting the
analysis sequentially, always keeping in mind that the logically prior variables
may have to be reintroduced in later analyses on the chance that they may
mediate the effects of other variables. In practice, very little analysis of survey
data has paid much attention to this problem. Perhaps the reason is that only
recently has anyone been able to handle the other problems so that a truly mul-
tivariate analysis was possible. And it is only when many variables begin to be
used simultanecusly that the problem of their position in a causal structure
becomes crucial.

Finally, there is the problem remaining from section B that the constructs of
theories do not have any one-to-one correspondence with the measures from
the survey. Sometimes this problem is handled by building complex variables
that hopefully represent the theoretical construct. The life cycle concept, for
instance, has been used this way. In a receni study, a series of questions that
seemed to be asking evaluations of occupations were translated into a measure
which was (hopefully) an index measure of achievement motivation.!®* More
commonly, the analyst has been constrained to interpret each of the measured
characteristics in terms of some theoretical meaning which it hopefully has.
This is often not very satisfactory. In the case of liquid assets, the amount of

i James Morgan, *Consumer investment expenditures,” American Economic Review, XL.VIII (December,
1958), 874-902, Appendix, 898-901.

Arthur 8. Goldberger and D. B. Jochems, “A note on stepwise least aquares,” Journal of the American Statistical
Association, 56 (March, 1961), 105-11.

1% Morgan, David, Cohen, and Brazer, Incoms and Wdfare in the United States. (New York: McGraw-Hill
Book Company, Inc., 1962).
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these assets a man has represents both his past propensity to save and his
present ability to dissave, two effects which could be expected to operate in
opposite directions. In general, the analysis of survey data has been much
better than this summary of problems would indicate. Varied approaches have
been ingeniously used, and cautiously interpreted.

E. PROPOSAL FOR A PROCESS FOR ANALYZING DATA

One way to focus on the problems of analyzing dats is to propose a better
procedure. The proposal made here is essentially a formalization of what a good
researcher does slowly and ineffectively, but insightfully on an IBM sorter.
With large masses of data, weighted samples, and a desire for estimates of
the reduction in error, however, we need to be able to simulate this process on
large scale computing equipment. The basic idea is the sequential identification
and segregation of subgroups one at & time, nonsymmetrically, so as to select
the set of subgroups which will reduce the error in predicting the dependent
variable as much as possible relative to the number of groups. A subgroup
may be defined as membership in one or more subclasses of one or more char-
acteristics, If more than one characteristic is used, the membership is joint,
not alternative.

It is assumed that where the problem of chains of causation and logical prior-
ity of one variable over another exists, that this problem will be handled by
dividing the explanatory variables or predictors into sets. One then takes the
pooled residuals from an analysis using the first set of predictors and analyses
these residuals against the second set of predictors. The residuals from the
analysis using this second set could then be run against a third set. In practice,
we might easily end up with three states—esrly childhood or parental factors,
actions and events during the lifetime, and current situational and attitudinal
variables.

The possibilities of interactions between variables in different stages can be
handled by reintroducing in the second or third analyses, factors whose simple
effects have already been removed, but which may also mediate the effects
of factors at one of the later stages, that is, nonwhites may have their income
affected by education differently from whites.

Temporarily setting aside these complications, we turn now to a description
of the process of analysis using the variables from any one stage of the causal
process. Since even the best measured variable may actually have nonlinear
effects on the dependent variable, we treat each of the explanatory factors as a
set of classifications. As we said, our purpose is to identify and segregate a set
of subgroups which are the best we can find for maximizing our ability to pre-
dict the dependent variable. We mean maximum relative to the number of
groups used, since an indefinitely large number of subgroups wonld “explain”
everything in the sample. To be more sophisticated, if we use a model based on
the assumption that we want to predict back to the population, there is an
optimal number of subgroups. However, as an approximation we propose that
with samples of two to three thousand we arbitrarily segregate only those
groups, the separation of which will reduce the total error sum of squares by at
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least one per cent and do not even attempt further subdivision unless the
group to be divided has a residual error (within group sum of squares) of at
‘least two per cent of the total sum of squares. This restricts us to a mazimum
of fifty-one groups. It is just as arbitrary as the use of the 5 per cent level in
significance tests and perhaps should be subject to later revision on the basis of
experience.

We now describe the process of analysis in the form of a series of decision
rules and instructions. We think of the sample in the beginning as a single
group. The first decision is what single division of the parent group into two
will do the most good. A second dceision has then to be made: Which of the two
groups we now have has the largest remaining error sum of squares, and hence
should be investigated next for possible further subdivision? Whenever a further
subdivision-of a group will not reduce the unexplained sum of squares by at
least one per cent of the total original sum of squares, we pay no further atten-
tion to that subgroup. Whenever there is no subgroup accounting for at least
two per cent of the original sum of squares, we have finished our job. We turn
now to a more orderly description of this process.

1) Considering all feasible divisions of the group of cbservations on the basis
of each explanatory factor to be included (but not combinations of factors) find
the division of the classes of any characteristic such that the partitioning of this
group into two subgroups on this basis provides the largest reduction in the un-
explained sum of squares.

Starting with any given group, and considering the various possible ways of
splitting it into two groups, it turns out that a quick examination of any
possible subgroup provides a rapid estimate of how much the error variance
would be reduced by segregating it:

The reduction in error sum of squares is the same size (opposite sign) as the
increase in the explained sum of squares.

For the group as a whole, the sum of squares explained by the mean is

-, (XX

NX: = -= (1)

and the total sum of squares (unexplained by the mean) is

S (X -Fy= DX - (ZX)Z @

If we now divide the group into two groups of size N, and N. and means X,
and X, what happens to the explained sum of squares?

Explained sum of squares = N X1+ NoXo. 3

The division which increases this expression most over NX? clearly does us
the most good in improving our ability to predict individuals in the sample.

Fortunately we do not even need to calculate anything more than & term
involving the subgroupunder inspection, since N and »_X remain known and
constant throughout this search process.
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.. explained sum of squares =_N1(EJ:VI 1) + (N — N (N_Z__A;;)
_(EX) (EX-FTX)
Nl N_Nl

The number of cases (or proportion of sample} and the sum of the dependent
varigble for any subgroup are enough to estimate how much reduction in error
" sum of squares would result from separating it from the parent group.

If it scems desirable, a variance components model which takes account of
the fact that we really want optimal prediction of members of the population
not merely of the sample, can be used. Indeed, the expression for the estimate
of the explained, or “between” component of variance in the population turns
out to be

N - 1['<>:X1)2+ (X - zxm]_ > x \_E».)L

2 N'"z N1 N—Nl N—'ZJ =~
ép = N2+AT2 / (7)
N7
N

which, though it looks formidable, contains only one new element and that is
a term from the total sum of squares of the original group which is constant and
can be ignored in selecting the best split. The expression in the brackets is the
explained sum of squares already derived. N, 2_X, and »_X? are known and
constant. The denominator is an adjustment developed by Ganguli for a bias
arising from unequal N’s. Where ¥, equals N3, the denominator becomes equal
to Ni. The more unequal the N’s, the smaller the denominator, relative to an
arithmetic mean of the N’s. The ratio of the explained component of variance
to the total is rho, the intraclass correlation coefficient. Hence, in using a popu-
lation model, we are searching for the particular division of a group into two
that will provide the largest rho.}” Computing formulas for weighted data or a
dummy (one or zero) dependent variable can be derived easily.

(2) Make sure that the actual reduction in error sum of squares is larger than
one per cent of the total sum of squares for the whole sample, i.e., > .01 (3_X2,
~NX?) (If not select the next most promising group for search for possible
subdivision, ete.)

(3) Among the groups so segregated, including the parent, or bereft ones, we
now select a group for a further search for another subproup to be split off.
The selection of the group to try is on the basis of the size of the unexplained

17 R, L. Anderson and T. A. Bancroft, Statiatical Theory in Research (New York: McGraw-Hill Book Company,
1862).

M. Ganguli, “A note on nested sampling,” Sankhya'5 (1941), 449-52.

For an example of the use of rho in analysis see Leslie Kish and John Lansing, “The family life cycle as an in-
dependent variable,” Amearican Scciological Reviewn, XXII (Ootober, 1457), 5124.
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sum of squares within the group, or the heterogeneity of the group times its
size, which comes to the same thing. It may well not be the group with the
most deviant mean.

In other words, among the groups, select the one where

> X:j — N.X:is largest.

If it is less than two per cent of the total sum of squares for the whole sample,
stop, because no further subdivision could reduce the error sum of squares by
more than two per cent. If it is more than two per cent, repeat Step 1.

Note that the process stops when no group accounts for more than two per
cent of the error sum of squares. If a group being searched allows no further
segregation that will account for one per cent, the next most promising group
is searched, because it may still be possible that another group with a smaller
sum of squares within it can be profitably subdivided.

Since only a single group is split off at a time, the order of scanning to select
that one should not affect the results. Since an independent scanning is done
cach time, the order in which groups are selected for further investigation
should not matter either, hence our criterion is a pure efficiency one.

Chart IT shows how the process suggested might arrive at a set of groups
approaching those given earlier in Table 1. The numbers are rough estimates
from Table 1.

Note on Amount of Delail in the Codes

The search for the best single subgroup which can be split off involves a
complete scanning at each stage of each of the explanatory classifications,
and within each classification of all the feasible splits. This is not so difficult
as it seems, for within any classification not all possible combinations of codes
are feasible. If one orders the subclasses in ascending sequence according to
their means (on the dependent variable), then it can be shown that the best
single division—the one which maximizes the explained sum of squares—will
never combine noncontiguous groups.

Hence, starting at either end of the ordered subgroups, the computer will
sequentially add one subgroup after another to that side and subtract it from
the other side, always recomputing the explained sum of squares. By “ex-
plained” we mean that the means of the two halves are used for predicting
rather than the over-all mean. Whenever the new division has a higher ex-
plained sum of squares, it is retained, otherwise the previous division is re-
membered. But in any case, the process is continued until there is only one
subgroup left on the other side, to allow for the possibility of “local maxima.”

The machine then remembers the best split, and the explained sum of squares
associated with it, and proceeds to the next explanatory characteristic. If upon
repeating this procedure with the subclasses of that characteristic, a still larger
explained sum of squares is discovered, the new split on the new characteristic
is retained and the less adequate one dropped.

The final result will thus be the best single split, allowing any reasonable
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Previous Work of a Similar Nature

One can never be sure that there does not exist previous work relevant to
any “new” idea. William Belson has suggested a sequential, nonsymmetrical
division of the sample which he calls “biological classification,” for a different
purpose, that of matching two groups on other characteristics used as controls
50 that they can be compared.!® His procedure is restricted to the case where the
criterion can be converted to a one-zero division, and the criterion for sub-
division is the best improvernent in discrimination. The method takes account,
of the number of cases, i.e., focuses on improvement in prediction, not on levels
of significance. We have proposed this same focus. No rules are provided as to
when to stop, or in what order to keep searching, though an intelligent re-
searcher would intuitively follow the rules suggested here.

Another approach to the problem as been suggested and tried by André
Danitre and Elizabeth Gilboy. Their approach attempts to keep numerical
variables whenever there appears to be linearity, at least within ranges, and to
repool groups whenever there does not appear any substantial nonlinesarity or
interaction effect. The method is feasible only where the number of factors is
limited. The pooling both of groups and of ranges of “variables” makes it com-
plicated.’ In practice, they found it useful to restrict the number of allowable
interaction cffects.

There are also studies going on in the selection of test items to get the best
prediction with a limited set of predictors. But the prediction equation in these
analyses always seems to be multiple regression without any interaction ef-
feets.? Group-screening methods have been suggested whereby a set of factors
is lumped and tested and the individual components checked only if the group
seems to have an effect. These procedures, however, require knowledge of the
direction of each effect and again assume no interaction effects.? These group-
screening methods are largely used in experimental designs and quality control
procedures. It is interesting, however, that they usually end up with two-level
designs, and our suggested procedure of isolating one subgroup &t a time has
some similarity to this search for simplicity.

The approach suggested here bears a striking resemblance to Sewall Wright’s
path coefficients, and to procedures informally called “pattern analysis.” The
justification for it, however, comes not fron any complicated statistical theory,
nor from some enticing title, but from a calculated belief that for a large range
of problems, the real world is such that the proposed procedure will facilitate
understanding it, and foster the development of better connections between
theoretical constructs and the things we can measure.

One possible outecome, for those who want precise measurement and testing,

¥ William A. Belson, “Matching and prediction on the principle of biological clussifieation,” Applied Statistica,
VIII (1869), 85-75.

1% André Danidre and Elizabeth Gilboy, “Tle specification of empirical consumption structures, in Consumption
and Saving, Volume I, 1. Friend and R. Jones {Editora) (Philadelphia: University of Pennaylvania Press, 1960),
pp. 93-136.

1 Paul Horst and Charlotte MacEwan, "Optimal test-length for multiple prediction, the general ¢nse,”
Paychometrika, 22 (December, 1957), 311-24 und references cited therein.

1 (3, 8. Wataon, *A Study of the group-screening method,” Technomatrics, 3 {August, 1961), 371-83,

G. E. P. Box, “Integration of techniques for proceas control,” Transactions of the Eleventh Annual Convention
of the American Socsely for Quality Control, 1958,




PROBLEMS OF SURVEY DATA 235

is the development of new constructs, as combinations of the measured “vari-
ables,” which are then crecated immediately in new studies and used in the
analysis. The family life cycle was partly theoretical, partly empirical in its
development. Other such constructs may appear from our analysis, and then
acquire theoretical interpretation.

F. WHAT NEEDS TO BE DONE?

It may seem that the procedure proposed here is actually relatively simple.
Itach stage involves a simple search of groups defined as a subelass of any one
classification and a selection of one with a maximum of a certain ¢xpression
which is easily computed. It turns out, however, that the computer implica-
tions of this approach are dramatic. The approach, if it is to use the computer
efficiently requires a large amount of immediate access storage which does not)
exist on many present-day computers. OQur traditional procedures for multi-
variate analysis involve storing information in the computer in the form of a
series of two-way tables, or cross-product moments. This throws away most of
the inferesting and potentially fruitful interconnectedness of survey data, and
we only recapture part of it by multivariate processes which assume additivity.
The implications of the proposed procedure are that we need to be able to keep
track of all the relevant information about each individual in the computer as
we proceed with the analysis.

Only an examination of the pedigree of the groups selected by the machine
will tell whether they reveal things about the real world, or lead to intuitively
meaningful theoretical constructs, which had not already come out of earlier
“multivariate” analyses of the same data.

- It may prove necessary to add constraints to induce more symmetry, such
as giving priority to seriatim splits on the same characteristie, since this might
make the interpretation easier. Or we may want to introduce an arbitrary
first split, say on sex, to see whether offsetting interactions previously hidden
could be uncovered in this way. :

Most statistical estimates carry with them procedures for estimating their
sampling variability. Sampling stability with the proposed program would
mean that using a different sample, one would end up with the same complex
groups segregated. No simple quantitative measure of similarity seems possible,
nor any way of deriving its sampling properties. The only practical solution
would seern to be to try the program out on some properly designed half-
samples, taking account of the original sample stratification and controls,
and to describe the extent of similarity of the pedigrees of the groups so isolated.
Since the program “tries” an almost unlimited number of things, no signif-
icance tests are appropriate, and in any case the concern is with discovering a
limited number of “indexes” or complex constructs which will explain more
than other possible sets.

It seems clear that the procedure takes care of most of the problems dis-
cussed earlier in this paper. It takes care of any number of explanatory factors,
giving them all an equal chance to come in. It uses clagsifications, and indeed
only those sets of subclasses which it actually proves important to distinguish.
The results still depend on the detail with which the original data were coded.
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Differential quality of the measures used remains a problem. Sample complexi-
tizs are relatively unimportant since measures of importance in reducing pre-
dictive error a1e involved rather than tests of significance, and one can restrict
the objective to predicting the sample rather than the population. Intercorrela-
{lons among the predictors are adequately handled, and logical priorities in
causation can be.

Most important, however, the interaction effects which would otherwise be
ignored, or specified in advance arbitrarily from among a large possible set,
are allowed to appear if they are important.

There is theory built into this apparently empiristic process, partly in the
selection of the explanatory characteristics introduced, but more so in the rules
of the procedures. Where there is one factor of supreme theoretical interest, it
¢an be held back and used to explain the differences remaining within the
homogeneous groups developed by the program. This is a severe test both for
the effect of this factor and for possible first-order interaction effects between
it and any of the other factors used in defining the groups.

Finally, where it is desired to create an index of several related measures,
such as attitudinal questions in the same general area, the program can be re-
stricted to these factors and to five or ten groups, and will create a complex
index with maxima] predictive power.

Reprinted from the JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
June, 1963, Vol. 58
pp. 415-434
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